Blog
About

0
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Host Specificity of the Parasitic Wasp Anaphes flavipes (Hymenoptera: Mymaridae) and a New Defence in Its Hosts (Coleoptera: Chrysomelidae: Oulema spp.)

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The parasitic wasp Anaphes flavipes (Förster, 1841) (Hymenoptera: Mymaridae) is an important egg parasitoid of cereal leaf beetles. Some species of cereal leaf beetle co-occur in the same localities, but the host specificity of the wasp to these crop pests has not yet been examined in detail. A lack of knowledge of host specificity can have a negative effect on the use of this wasps in biological control programs addressed to specific pest species or genus. In this study, laboratory experiments were conducted to assess the host specificity of A. flavipes for three species of cereal leaf beetles ( Oulema duftschmidi Redtenbacher, 1874, Oulema gallaeciana Heyden, 1879 and Oulema melanopus Linnaeus, 1758) in central Europe. For the first time, a new host defence against egg parasitoids occurring in O. gallaeciana from localities in the Czech Republic, a strong dark sticky layer on the egg surface, was found and described. The host specificity of A. flavipes was studied in the locality with the presence of this defence on O. gallaeciana eggs (the dark sticky layer) (Czech Republic) and in a control locality (Germany), where no such host defence was observed. Contrary to the idea that a host defence mechanism can change the host specificity of parasitoids, the wasps from these two localities did not display any differences in that. Respectively, even though it has been observed that eggs with sticky dark layer can prevent parasitization, the overall rate of parasitization of the three species of cereal beetles has not been affected. However, in our view, new host defence can influence the effects of biological control, as eggs of all Oulema spp. in the locality are protected against parasitization from the wasps stuck on the sticky layer of the host eggs of O. gallaeciana.

          Related collections

          Most cited references 37

          • Record: found
          • Abstract: found
          • Article: not found

          Habitat management to conserve natural enemies of arthropod pests in agriculture.

          Many agroecosystems are unfavorable environments for natural enemies due to high levels of disturbance. Habitat management, a form of conservation biological control, is an ecologically based approach aimed at favoring natural enemies and enhancing biological control in agricultural systems. The goal of habitat management is to create a suitable ecological infrastructure within the agricultural landscape to provide resources such as food for adult natural enemies, alternative prey or hosts, and shelter from adverse conditions. These resources must be integrated into the landscape in a way that is spatially and temporally favorable to natural enemies and practical for producers to implement. The rapidly expanding literature on habitat management is reviewed with attention to practices for favoring predators and parasitoids, implementation of habitat management, and the contributions of modeling and ecological theory to this developing area of conservation biological control. The potential to integrate the goals of habitat management for natural enemies and nature conservation is discussed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The adaptive significance of insect gall morphology

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Arms races between and within species.

              An adaptation in one lineage (e.g. predators) may change the selection pressure on another lineage (e.g. prey), giving rise to a counter-adaptation. If this occurs reciprocally, an unstable runaway escalation or 'arms race' may result. We discuss various factors which might give one side an advantage in an arms race. For example, a lineage under strong selection may out-evolve a weakly selected one (' the life-dinner principle'). We then classify arms races in two independent ways. They may be symmetric or asymmetric, and they may be interspecific or intraspecific. Our example of an asymmetric interspecific arms race is that between brood parasites and their hosts. The arms race concept may help to reduce the mystery of why cuckoo hosts are so good at detecting cuckoo eggs, but so bad at detecting cuckoo nestlings. The evolutionary contest between queen and worker ants over relative parental investment is a good example of an intraspecific asymmetric arms race. Such cases raise special problems because the participants share the same gene pool. Interspecific symmetric arms races are unlikely to be important, because competitors tend to diverge rather than escalate competitive adaptations. Intraspecific symmetric arms races, exemplified by adaptations for male-male competition, may underlie Cope's Rule and even the extinction of lineages. Finally we consider ways in which arms races can end. One lineage may drive the other to extinction; one may reach an optimum, thereby preventing the other from doing so; a particularly interesting possibility, exemplified by flower-bee coevolution, is that both sides may reach a mutual local optimum; lastly, arms races may have no stable and but may cycle continuously. We do not wish necessarily to suggest that all, or even most, evolutionary change results from arms races, but we do suggest that the arms race concept may help to resolve three long-standing questions in evolutionary theory.
                Bookmark

                Author and article information

                Journal
                Insects
                Insects
                insects
                Insects
                MDPI
                2075-4450
                10 March 2020
                March 2020
                : 11
                : 3
                Affiliations
                [1 ]Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00 Prague 6—Suchdol, Czech Republic
                [2 ]Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 43 Prague 2, Czech Republic; HadravaJirka@ 123456seznam.cz (J.H.); petr.jansta@ 123456natur.cuni.cz (P.J.)
                [3 ]Institute of Entomology, Biological Centre, Czech Academy of Sciences, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic
                [4 ]Group Function of Invertebrate and Plant Biodiversity in Agro-Ecosystems, Crop Research Institute, Drnovská 507, CZ-161 06 Praha 6—Ruzyně, Czech Republic; jirislavskuhrovec@ 123456gmail.com
                Author notes
                [* ]Correspondence: alsamkova@ 123456gmail.com ; Tel.: +420-607-228-572
                Article
                insects-11-00175
                10.3390/insects11030175
                7143892
                32164339
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                Comments

                Comment on this article