17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The corollaries of the obesity epidemic that plagues developed societies are malnutrition and resulting biochemical imbalances. Low levels of essential n-3 polyunsaturated fatty acids (n-3 PUFAs) have been linked to neuropsychiatric diseases, but the underlying synaptic alterations are mostly unknown. We found that lifelong n-3 PUFAs dietary insufficiency specifically ablates long-term synaptic depression mediated by endocannabinoids in the prelimbic prefrontal cortex and accumbens. In n-3-deficient mice, presynaptic cannabinoid CB(1) receptors (CB(1)Rs) normally responding to endocannabinoids were uncoupled from their effector G(i/o) proteins. Finally, the dietary-induced reduction of CB(1)R functions in mood-controlling structures was associated with impaired emotional behavior. These findings identify a plausible synaptic substrate for the behavioral alterations caused by the n-3 PUFAs deficiency that is often observed in western diets.

          Related collections

          Most cited references 46

          • Record: found
          • Abstract: found
          • Article: not found

          Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress.

          Mice experiencing repeated aggression develop a long-lasting aversion to social contact, which can be normalized by chronic, but not acute, administration of antidepressant. Using viral-mediated, mesolimbic dopamine pathway-specific knockdown of brain-derived neurotrophic factor (BDNF), we showed that BDNF is required for the development of this experience-dependent social aversion. Gene profiling in the nucleus accumbens indicates that local knockdown of BDNF obliterates most of the effects of repeated aggression on gene expression within this circuit, with similar effects being produced by chronic treatment with antidepressant. These results establish an essential role for BDNF in mediating long-term neural and behavioral plasticity in response to aversive social experiences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mood disorders in the medically ill: scientific review and recommendations.

            The purpose of this review is to assess the relationship between mood disorders and development, course, and associated morbidity and mortality of selected medical illnesses, review evidence for treatment, and determine needs in clinical practice and research. Data were culled from the 2002 Depression and Bipolar Support Alliance Conference proceedings and a literature review addressing prevalence, risk factors, diagnosis, and treatment. This review also considered the experience of primary and specialty care providers, policy analysts, and patient advocates. The review and recommendations reflect the expert opinion of the authors. Reviews of epidemiology and mechanistic studies were included, as were open-label and randomized, controlled trials on treatment of depression in patients with medical comorbidities. Data on study design, population, and results were extracted for review of evidence that includes tables of prevalence and pharmacological treatment. The effect of depression and bipolar disorder on selected medical comorbidities was assessed, and recommendations for practice, research, and policy were developed. A growing body of evidence suggests that biological mechanisms underlie a bidirectional link between mood disorders and many medical illnesses. In addition, there is evidence to suggest that mood disorders affect the course of medical illnesses. Further prospective studies are warranted.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation, function, and dysregulation of endocannabinoids in models of adipose and beta-pancreatic cells and in obesity and hyperglycemia.

              Cannabinoid CB(1) receptor blockade decreases weight and hyperinsulinemia in obese animals and humans in a way greatly independent from food intake. The objective of this study was to investigate the regulation and function of the endocannabinoid system in adipocytes and pancreatic beta-cells. Mouse 3T3-F442A adipocytes and rat insulinoma RIN-m5F beta-cells, pancreas and fat from mice with diet-induced obesity, visceral and sc fat from patients with body mass index equal to or greater than 30 kg/m(2), and serum from normoglycemic and type 2 diabetes patients were studied. Endocannabinoid enzyme and adipocyte protein expression, and endocannabinoid and insulin levels were measured. Endocannabinoids are present in adipocytes with levels peaking before differentiation, and in RIN-m5F beta-cells, where they are under the negative control of insulin. Chronic treatment of adipocytes with insulin is accompanied by permanently elevated endocannabinoid signaling, whereas culturing of RIN-m5F beta-cells in high glucose transforms insulin down-regulation of endocannabinoid levels into up-regulation. Epididymal fat and pancreas from mice with diet-induced obesity contain higher endocannabinoid levels than lean mice. Patients with obesity or hyperglycemia caused by type 2 diabetes exhibit higher concentrations of endocannabinoids in visceral fat or serum, respectively, than the corresponding controls. CB(1) receptor stimulation increases lipid droplets and decreases adiponectin expression in adipocytes, and it increases intracellular calcium and insulin release in RIN-m5F beta-cells kept in high glucose. Peripheral endocannabinoid overactivity might explain why CB(1) blockers cause weight-loss independent reduction of lipogenesis, of hypoadiponectinemia, and of hyperinsulinemia in obese animals and humans.
                Bookmark

                Author and article information

                Journal
                Nature Neuroscience
                Nat Neurosci
                Springer Science and Business Media LLC
                1097-6256
                1546-1726
                March 2011
                January 30 2011
                March 2011
                : 14
                : 3
                : 345-350
                Article
                10.1038/nn.2736
                21278728
                © 2011

                Comments

                Comment on this article