41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The human phylome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The human phylome, which includes evolutionary relationships of all human proteins and their homologs among thirty-nine fully sequenced eukaryotes, is reconstructed.

          Abstract

          Background:

          Phylogenomics analyses serve to establish evolutionary relationships among organisms and their genes. A phylome, the complete collection of all gene phylogenies in a genome, constitutes a valuable source of information, but its use in large genomes still constitutes a technical challenge. The use of phylomes also requires the development of new methods that help us to interpret them.

          Results:

          We reconstruct here the human phylome, which includes the evolutionary relationships of all human proteins and their homologs among 39 fully sequenced eukaryotes. Phylogenetic techniques used include alignment trimming, branch length optimization, evolutionary model testing and maximum likelihood and Bayesian methods. Although differences with alternative topologies are minor, most of the trees support the Coelomata and Unikont hypotheses as well as the grouping of primates with laurasatheria to the exclusion of rodents. We assess the extent of gene duplication events and their relationship with the functional roles of the protein families involved. We find support for at least one, and probably two, rounds of whole genome duplications before vertebrate radiation. Using a novel algorithm that is independent from a species phylogeny, we derive orthology and paralogy relationships of human proteins among eukaryotic genomes.

          Conclusion:

          Topological variations among phylogenies for different genes are to be expected, highlighting the danger of gene-sampling effects in phylogenomic analyses. Several links can be established between the functions of gene families duplicated at certain phylogenetic splits and major evolutionary transitions in those lineages. The pipeline implemented here can be easily adapted for use in other organisms.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: not found
          • Article: not found

          Identification of common molecular subsequences.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Amino acid substitution matrices from protein blocks.

            Methods for alignment of protein sequences typically measure similarity by using a substitution matrix with scores for all possible exchanges of one amino acid with another. The most widely used matrices are based on the Dayhoff model of evolutionary rates. Using a different approach, we have derived substitution matrices from about 2000 blocks of aligned sequence segments characterizing more than 500 groups of related proteins. This led to marked improvements in alignments and in searches using queries from each of the groups.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data.

              O. Gascuel (1997)
              We propose an improved version of the neighbor-joining (NJ) algorithm of Saitou and Nei. This new algorithm, BIONJ, follows the same agglomerative scheme as NJ, which consists of iteratively picking a pair of taxa, creating a new mode which represents the cluster of these taxa, and reducing the distance matrix by replacing both taxa by this node. Moreover, BIONJ uses a simple first-order model of the variances and covariances of evolutionary distance estimates. This model is well adapted when these estimates are obtained from aligned sequences. At each step it permits the selection, from the class of admissible reductions, of the reduction which minimizes the variance of the new distance matrix. In this way, we obtain better estimates to choose the pair of taxa to be agglomerated during the next steps. Moreover, in comparison with NJ's estimates, these estimates become better and better as the algorithm proceeds. BIONJ retains the good properties of NJ--especially its low run time. Computer simulations have been performed with 12-taxon model trees to determine BIONJ's efficiency. When the substitution rates are low (maximum pairwise divergence approximately 0.1 substitutions per site) or when they are constant among lineages, BIONJ is only slightly better than NJ. When the substitution rates are higher and vary among lineages,BIONJ clearly has better topological accuracy. In the latter case, for the model trees and the conditions of evolution tested, the topological error reduction is on the average around 20%. With highly-varying-rate trees and with high substitution rates (maximum pairwise divergence approximately 1.0 substitutions per site), the error reduction may even rise above 50%, while the probability of finding the correct tree may be augmented by as much as 15%.
                Bookmark

                Author and article information

                Journal
                Genome Biol
                Genome Biology
                BioMed Central
                1465-6906
                1465-6914
                2007
                13 June 2007
                : 8
                : 6
                : R109
                Affiliations
                [1 ]Bioinformatics Department, Centro de Investigación Príncipe Felipe, Autopista del Saler, 46013 Valencia, Spain.
                Article
                gb-2007-8-6-r109
                10.1186/gb-2007-8-6-r109
                2394744
                17567924
                08ecd70a-0991-4b99-862e-4550d86b0315
                Copyright © 2007 Huerta-Cepas, et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 November 2006
                : 16 March 2007
                : 13 June 2007
                Categories
                Research

                Genetics
                Genetics

                Comments

                Comment on this article