3
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SIRT1/FOXO1 Axis-Mediated Hippocampal Angiogenesis is Involved in the Antidepressant Effect of Chaihu Shugan San

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          Chaihu Shugan San (CSS) has a long history for treating major depressive disorder (MDD), which has been verified effectively and safely in clinical studies. Deficient angiogenesis plays important roles in MDD. However, the underlying mechanisms of CSS on angiogenesis remain poorly understood.

          Methods

          Network pharmacology analysis was applied to explore the potential angiogenic targets and pathways between CSS and MDD. These targets would be validated in chronic unpredictable mild stress (CUMS)-induced depressive-like mice by Western blots, immunofluorescence, and immunohistochemistry. Then, the underlying molecular mechanisms were further investigated in brain microvascular endothelial cells (BMVECs) with CSS-containing serum by Western blots and immunofluorescence.

          Results

          Network pharmacology analysis showed that the antidepressant role of CSS was closely associated with Silent information regulator protein 1 (SIRT1)/Forkhead box O1 (FOXO1) axis-mediated angiogenesis. This prediction was confirmed in the following experiments. CSS induced angiogenesis, increased SIRT1 expression, and decreased FOXO1 expression in the hippocampus of CUMS mice. Five percent CSS-containing serum produced a significant increase in BMVECs proliferation, migration, and tube formation, but these effects were reduced by SIRT1 silencing. CSS serum could also promote FOXO1 translocation to the cytoplasm through SIRT1 signaling, which triggered FOXO1 protein degradation. What is more, CSS upregulated VEGFA and BDNF expressions not only in the hippocampus of depressive mice but also in BMVECs supernatants. Of note, these trophic factors play important roles in promoting neurogenesis.

          Conclusion

          The study showed that CSS could promote angiogenesis and neurogenesis in the hippocampus of CUMS-induced mice. The underlying molecular mechanism involves the SIRT1/FOXO1 axis and subsequent regulation of VEGFA and BDNF. These findings provide novel insight into CSS drug development, and targeting the SIRT1/FOXO1 axis might be a promising strategy to treat MDD.

          Graphical Abstract

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Depression

          Major depression is a common illness that severely limits psychosocial functioning and diminishes quality of life. In 2008, WHO ranked major depression as the third cause of burden of disease worldwide and projected that the disease will rank first by 2030.1 In practice, its detection, diagnosis, and management often pose challenges for clinicians because of its various presentations, unpredictable course and prognosis, and variable response to treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Network Pharmacology Databases for Traditional Chinese Medicine: Review and Assessment

            The research field of systems biology has greatly advanced and, as a result, the concept of network pharmacology has been developed. This advancement, in turn, has shifted the paradigm from a “one-target, one-drug” mode to a “network-target, multiple-component-therapeutics” mode. Network pharmacology is more effective for establishing a “compound-protein/gene-disease” network and revealing the regulation principles of small molecules in a high-throughput manner. This approach makes it very powerful for the analysis of drug combinations, especially Traditional Chinese Medicine (TCM) preparations. In this work, we first summarized the databases and tools currently used for TCM research. Second, we focused on several representative applications of network pharmacology for TCM research, including studies on TCM compatibility, TCM target prediction, and TCM network toxicology research. Third, we compared the general statistics of several current TCM databases and evaluated and compared the search results of these databases based on 10 famous herbs. In summary, network pharmacology is a rational approach for TCM studies, and with the development of TCM research, powerful and comprehensive TCM databases have emerged but need further improvements. Additionally, given that several diseases could be treated by TCMs, with the mediation of gut microbiota, future studies should focus on both the microbiome and TCMs to better understand and treat microbiome-related diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice.

              Since its introduction almost 20 years ago, the tail suspension test has become one of the most widely used models for assessing antidepressant-like activity in mice. The test is based on the fact that animals subjected to the short-term, inescapable stress of being suspended by their tail, will develop an immobile posture. Various antidepressant medications reverse the immobility and promote the occurrence of escape-related behaviour. This review focuses on the utility this test as part of a research program aimed at understanding the mechanism of action of antidepressants. We discuss the inherent difficulties in modeling depression in rodents. We describe how the tail suspension differs from the closely related forced swim test. Further, we address some key issues associated with using the TST as a model of antidepressant action. We discuss issues regarding whether it satisfies criteria to be a valid model for assessing depression-related behavioural traits. We elaborate on the tests' ease of use, strain differences observed in the test and gender effects in the test. We focus on the utility of the test for genetic analysis. Furthermore, we discuss the concept of whether immobility maybe a behavioural trait relevant to depression. All of the available pharmacological data using the test in genetically modified mice is collated. Special attention is given to selective breeding programs such as the Rouen 'depressed' mice which have been bred for high and low immobility in the tail suspension test. We provide an extensive pooling of the pharmacological studies published to date using the test. Finally, we provide novel pharmacological validation of an automated system (Bioseb) for assessing immobility. Taken together, we conclude that the tail suspension test is a useful test for assessing the behavioural effects of antidepressant compounds and other pharmacological and genetic manipulations relevant to depression.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                23 August 2022
                2022
                : 16
                : 2783-2801
                Affiliations
                [1 ]Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University , Beijing, 100050, People’s Republic of China
                [2 ]Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University , Beijing, 100050, People’s Republic of China
                [3 ]Department of Integrated Traditional and Western Medicine, Capital Medical University , Beijing, 100050, People’s Republic of China
                Author notes
                Correspondence: Jingjie Zhao, Beijing Friendship Hospital, Capital Medical University , No. 95 Yong-an Road, Beijing, 100050, People’s Republic of China, Tel/Fax +86 10-63139096, Email zhaojj@ccmu.edu.cn
                Author information
                https://orcid.org/http://orcid.org/0000-0001-8089-1314
                https://orcid.org/http://orcid.org/0000-0003-1560-5531
                Article
                370825
                10.2147/DDDT.S370825
                9419814
                36039087
                08f2e430-3043-495b-a23b-0b3c49db587b
                © 2022 Zhang et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 14 April 2022
                : 12 August 2022
                Page count
                Figures: 6, References: 61, Pages: 19
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                major depressive disorder,chaihu shugan san,sirt1/foxo1 axis,angiogenesis,brain microvascular endothelial cell

                Comments

                Comment on this article