85
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Staphylococcus comprises up to two-thirds of all pathogens in orthopedic implant infections and they are the principal causative agents of two major types of infection affecting bone: septic arthritis and osteomyelitis, which involve the inflammatory destruction of joint and bone. Bacterial adhesion is the first and most important step in implant infection. It is a complex process influenced by environmental factors, bacterial properties, material surface properties and by the presence of serum or tissue proteins. Properties of the substrate, such as chemical composition of the material, surface charge, hydrophobicity, surface roughness and the presence of specific proteins at the surface, are all thought to be important in the initial cell attachment process. The biofilm mode of growth of infecting bacteria on an implant surface protects the organisms from the host immune system and antibiotic therapy. The research for novel therapeutic strategies is incited by the emergence of antibiotic-resistant bacteria. This work will provide an overview of the mechanisms and factors involved in bacterial adhesion, the techniques that are currently being used studying bacterial-material interactions as well as provide insight into future directions in the field.

          Related collections

          Most cited references234

          • Record: found
          • Abstract: found
          • Article: not found

          Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci.

          The details of all steps involved in the quantification of biofilm formation in microtiter plates are described. The presented protocol incorporates information on assessment of biofilm production by staphylococci, gained both by direct experience as well as by analysis of methods for assaying biofilm production. The obtained results should simplify quantification of biofilm formation in microtiter plates, and make it more reliable and comparable among different laboratories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Biofilms: Microbial Life on Surfaces

            Microorganisms attach to surfaces and develop biofilms. Biofilm-associated cells can be differentiated from their suspended counterparts by generation of an extracellular polymeric substance (EPS) matrix, reduced growth rates, and the up- and down- regulation of specific genes. Attachment is a complex process regulated by diverse characteristics of the growth medium, substratum, and cell surface. An established biofilm structure comprises microbial cells and EPS, has a defined architecture, and provides an optimal environment for the exchange of genetic material between cells. Cells may also communicate via quorum sensing, which may in turn affect biofilm processes such as detachment. Biofilms have great importance for public health because of their role in certain infectious diseases and importance in a variety of device-related infections. A greater understanding of biofilm processes should lead to novel, effective control strategies for biofilm control and a resulting improvement in patient management.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Osteomyelitis.

              Bone and joint infections are painful for patients and frustrating for both them and their doctors. The high success rates of antimicrobial therapy in most infectious diseases have not yet been achieved in bone and joint infections owing to the physiological and anatomical characteristics of bone. The key to successful management is early diagnosis, including bone sampling for microbiological and pathological examination to allow targeted and long-lasting antimicrobial therapy. The various types of osteomyelitis require differing medical and surgical therapeutic strategies. These types include, in order of decreasing frequency: osteomyelitis secondary to a contiguous focus of infection (after trauma, surgery, or insertion of a joint prosthesis); that secondary to vascular insufficiency (in diabetic foot infections); or that of haematogenous origin. Chronic osteomyelitis is associated with avascular necrosis of bone and formation of sequestrum (dead bone), and surgical debridement is necessary for cure in addition to antibiotic therapy. By contrast, acute osteomyelitis can respond to antibiotics alone. Generally, a multidisciplinary approach is required for success, involving expertise in orthopaedic surgery, infectious diseases, and plastic surgery, as well as vascular surgery, particularly for complex cases with soft-tissue loss.
                Bookmark

                Author and article information

                Journal
                Biomatter
                Biomatter
                BIOM
                Biomatter
                Landes Bioscience
                2159-2527
                2159-2535
                01 October 2012
                01 October 2012
                : 2
                : 4
                : 176-194
                Affiliations
                [1 ]Instituto de Engenharia Biomédica; Universidade do Porto; Porto, Portugal
                [2 ]Departamento de Engenharia Metalúrgica e Materiais; Universidade do Porto; Porto, Portugal
                [3 ]Centro de Estudos em Biomedicina ; Universidade Fernando Pessoa; Porto, Portugal
                Author notes
                [* ]Correspondence to: Marta Ribeiro, Email: ribeiro_marta88@ 123456hotmail.com
                Article
                2012BIOMATTER0004R2 22905
                10.4161/biom.22905
                3568104
                23507884
                08fee683-0efb-4b83-a633-0a0c32b0820d
                Copyright © 2012 Landes Bioscience

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                Categories
                Review

                orthopedic implants,bone infections,bacterial adhesion,staphylococcus,bacteria-material interactions

                Comments

                Comment on this article