34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Basic fibroblast growth factor (FGF-2) internalization through the heparan sulfate proteoglycans-mediated pathway: an ultrastructural approach.

      European Journal of Cell Biology
      Animals, Cattle, Cell Line, Endocytosis, physiology, Endothelium, Vascular, cytology, metabolism, ultrastructure, Fibroblast Growth Factor 2, chemistry, Heparitin Sulfate, Horseradish Peroxidase, Microscopy, Electron, Proteoglycans

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biochemical studies have shown that basic fibroblast growth factor (bFGF or FGF-2) is internalized by two pathways, after binding to either FGF tyrosine kinase receptors or to heparan sulfate proteoglycans (HSPG). To get insights on the HSPG-mediated pathway, we have examined by electron microscopy the intracellular route of bFGF-HRP, a monovalent conjugate of bFGF and horseradish peroxidase which was found to bind to HSPG only and was detectable by electron microscopy. bFGF-HRP association to adult bovine aortic endothelial (ABAE) cells or baby hamster kidney (BHK) cells was inhibited by a high molar excess of native bFGF, a 2 M NaCl wash at neutral pH, heparin and heparan sulfate, but not by chondroitin 4-sulfate or chondroitin 6-sulfate. bFGF-HRP was not able to displace [125I]bFGF from its high-affinity binding sites, and the dissociation constant of its binding to ABAE cells was estimated at 3 nM. Time-course experiments were performed to follow bFGF-HRP endocytosis in ABAE cells. bFGF-HRP was found to enter the cell after binding to the plasma membrane or extracellular matrix. On the cell surface, the probe accumulated in noncoated flask-shaped invaginations and in caveolae rather than in clathrin-coated pits. Immediately after endocytosis, bFGF-HRP was detected in pleiomorphic tubulovesicular and tubulocisternal early endosomes. Multivesicular bodies contained diaminobenzidine (DAB) precipitate after 5 to 15 min, but lysosomes were not labeled before 1 h, indicating a delayed transfer from late endosomes to lysosomes. Labeling was never detected in the nucleus, even after intensification of the DAB reaction product by silver-gold enhancement. Similar endocytic pathways and intracellular locations were observed in other endothelial and non-endothelial cell types. These results suggest that bFGF associated to HSPG can enter the cell via several pathways and follows mainly a degradative route.

          Related collections

          Author and article information

          Comments

          Comment on this article