17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Human disturbance alters endocrine and immune responses in the Galapagos marine iguana (Amblyrhynchus cristatus).

      Hormones and Behavior
      Animals, Aquatic Organisms, physiology, Blood Bactericidal Activity, Complement System Proteins, metabolism, Corticosterone, blood, Ecuador, Endocrine System, Female, Human Activities, Humans, Iguanas, Immune System, Male, Stress, Psychological, physiopathology, Testosterone, Wound Healing

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anthropogenic disturbance is a relevant and widespread facilitator of environmental change and there is clear evidence that it impacts natural populations. While population-level responses to major anthropogenic changes have been well studied, individual physiological responses to mild disturbance can be equally critical to the long-term survival of a species, yet they remain largely unexamined. The current study investigated the impact of seemingly low-level anthropogenic disturbance (ecotourism) on stress responsiveness and specific fitness-related immune measures in different breeding stages of the marine iguana (Amblyrhynchus cristatus). Specifically, we found stress-induced elevations in plasma corticosterone among tourist-exposed populations relative to undisturbed populations. We also found changes in multiple immunological responses associated with stress-related effects of human disturbance, including bacterial killing ability, cutaneous wound healing, and hemolytic complement activity, and the responses varied according to reproductive state. By identifying health-related consequences of human disturbance, this study provides critical insight into the conservation of a well-known species that has a very distinct ecology. The study also broadens the foundation of knowledge needed to understand the global significance of various levels of human disturbance. Copyright © 2010 Elsevier Inc. All rights reserved.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Conservation physiology.

          Conservation biologists increasingly face the need to provide legislators, courts and conservation managers with data on causal mechanisms underlying conservation problems such as species decline. To develop and monitor solutions, conservation biologists are progressively using more techniques that are physiological. Here, we review the emerging discipline of conservation physiology and suggest that, for conservation strategies to be successful, it is important to understand the physiological responses of organisms to their changed environment. New physiological techniques can enable a rapid assessment of the causes of conservation problems and the consequences of conservation actions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates.

            The vertebrate stress response helps animals respond to environmental dangers such as predators or storms. An important component of the stress response is glucocorticoid (GC) release, resulting from activation of the hypothalamic-pituitary-adrenal axis. After release, GCs induce a variety of behavioral and physiological changes that presumably help the animal respond appropriately to the situation. Consequently, GC secretion is often considered an obligatory response to stressful situations. Evidence now indicates, however, that free-living species from many taxa can seasonally modulate GC release. In other words, the magnitudes of both unstressed and stressed GC concentrations change depending upon the time of year. This review examines the growing evidence that GC concentrations in free-living reptiles, amphibians, and birds, but not mammals, are commonly elevated during the breeding season. This evidence is then used to test three hypotheses with different focuses on GC's energetic or behavioral effects, as well as on GC's role in preparing the animal for subsequent stressors. These hypotheses attempt to place annual GC rhythms into a physiological or behavioral context. Integrating seasonal differences in GC concentrations with either different physiological states or different life history stages provides clues to a new understanding of how GCs actually help in survival during stress. Consequently, understanding seasonal modulation of GC release has far-reaching importance for both the physiology of the stress response and the short-term survival of individual animals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking.

              Delayed type hypersensitivity (DTH) reactions are antigen-specific, cell-mediated immune responses which, depending on the antigen involved, mediate beneficial (resistance to viruses, bacteria, fungi, and certain tumors) or harmful (allergic dermatitis, autoimmunity) aspects of immune function. We have shown that acute stress administered immediately before antigenic challenge results in a significant enhancement of a skin DTH response in rats. A stress-induced trafficking or redeployment of leukocytes to the skin may be one of the factors mediating this immunoenhancement. Here we investigate the effects of varying the duration, intensity, and chronicity of stress on the DTH response and on changes in blood leukocyte distribution and glucocorticoid levels. Acute stress administered for 2 h prior to antigenic challenge, significantly enhanced the DTH response. Increasing the duration of stress from 2 h to 5 h produced the same magnitude enhancement in cutaneous DTH. Moreover, increasing the intensity of acute stress produced a significantly larger enhancement of the DTH response which was accompanied by increasing magnitudes of leukocyte redeployment. In contrast, chronic stress suppressed the DTH response when it was administered for 3 weeks before sensitization and either discontinued upon sensitization, or continued an additional week until challenge, or extended for one week after challenge. The stress-induced redeployment of peripheral blood lymphocytes was attenuated with increasing exposure to chronic stress and correlated with attenuated glucocorticoid responsivity. These results suggest that stress-induced alterations in lymphocyte redeployment may play an important role in mediating the bi-directional effects of acute versus chronic stress on cell-mediated immunity in vivo.
                Bookmark

                Author and article information

                Comments

                Comment on this article