39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Involvement of a eukaryotic-like ubiquitin-related modifier in the proteasome pathway of the archaeon Sulfolobus acidocaldarius

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In eukaryotes, the covalent attachment of ubiquitin chains directs substrates to the proteasome for degradation. Recently, ubiquitin-like modifications have also been described in the archaeal domain of life. It has subsequently been hypothesized that ubiquitin-like proteasomal degradation might also operate in these microbes, since all archaeal species utilize homologues of the eukaryotic proteasome. Here we perform a structural and biochemical analysis of a ubiquitin-like modification pathway in the archaeon Sulfolobus acidocaldarius. We reveal that this modifier is homologous to the eukaryotic ubiquitin-related modifier Urm1, considered to be a close evolutionary relative of the progenitor of all ubiquitin-like proteins. Furthermore we demonstrate that urmylated substrates are recognized and processed by the archaeal proteasome, by virtue of a direct interaction with the modifier. Thus, the regulation of protein stability by Urm1 and the proteasome in archaea is likely representative of an ancient pathway from which eukaryotic ubiquitin-mediated proteolysis has evolved.

          Abstract

          Small archaeal ubiquitin-like modifiers (SAMPs) have been hypothesized to be part of an ancestral version of the ubiquitin-proteasome system. Here, Anjum et al. identify a SAMP homologous to the eukaryotic ubiquitin-related modifier-1 and show that it is processed by the 20S core proteasome in S. acidocaldarius.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes.

          Deubiquitinating enzymes (DUBs) are proteases that process ubiquitin or ubiquitin-like gene products, reverse the modification of proteins by a single ubiquitin(-like) protein, and remodel polyubiquitin(-like) chains on target proteins. The human genome encodes nearly 100 DUBs with specificity for ubiquitin in five gene families. Most DUB activity is cryptic, and conformational rearrangements often occur during the binding of ubiquitin and/or scaffold proteins. DUBs with specificity for ubiquitin contain insertions and extensions modulating DUB substrate specificity, protein-protein interactions, and cellular localization. Binding partners and multiprotein complexes with which DUBs associate modulate DUB activity and substrate specificity. Quantitative studies of activity and protein-protein interactions, together with genetic studies and the advent of RNAi, have led to new insights into the function of yeast and human DUBs. This review discusses ubiquitin-specific DUBs, some of the generalizations emerging from recent studies of the regulation of DUB activity, and their roles in various cellular processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ubiquitin-dependent protein degradation.

            A growing number of cellular regulatory mechanisms are being linked to protein modification by the polypeptide ubiquitin. These include key transitions in the cell cycle, class I antigen processing, signal transduction pathways, and receptor-mediated endocytosis. In most, but not all, of these examples, ubiquitination of a protein leads to its degradation by the 26S proteasome. Following attachment of ubiquitin to a substrate and binding of the ubiquitinated protein to the proteasome, the bound substrate must be unfolded (and eventually deubiquitinated) and translocated through a narrow set of channels that leads to the proteasome interior, where the polypeptide is cleaved into short peptides. Protein ubiquitination and deubiquitination are both mediated by large enzyme families, and the proteasome itself comprises a family of related but functionally distinct particles. This diversity underlies both the high substrate specificity of the ubiquitin system and the variety of regulatory mechanisms that it serves.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of DNA damage responses by ubiquitin and SUMO.

              Ubiquitylation and sumoylation, the covalent attachment of the polypeptides ubiquitin and SUMO, respectively, to target proteins, are pervasive mechanisms for controlling cellular functions. Here, we summarize the key steps and enzymes involved in ubiquitin and SUMO conjugation and provide an overview of how they are crucial for maintaining genome stability. Specifically, we review research that has revealed how ubiquitylation and sumoylation regulate and coordinate various pathways of DNA damage recognition, signaling, and repair at the biochemical, cellular, and whole-organism levels. In addition to providing key insights into the control and importance of DNA repair and associated processes, such work has established paradigms for regulatory control that are likely to extend to other cellular processes and that may provide opportunities for better understanding and treatment of human disease. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                08 September 2015
                2015
                : 6
                : 8163
                Affiliations
                [1 ]Department of Biochemistry, University of Cambridge , Tennis Court Road, Cambridge CB2 1GA, UK
                [2 ]Department of Biochemistry and Cambridge Systems Biology Centre, Cambridge Centre for Proteomics , Cambridge CB2 1QR, UK
                [3 ]Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology , 35043 Marburg, Germany
                Author notes
                [*]

                These authors contributed equally to this work.

                [†]

                Present address: University of Freiburg, Molecular Biology of Archaea, Institute for Biology II- Microbiology, Schänzlestrasse 1, 79104 Freiburg, Germany; The Francis Crick Institute, Euston Road, London, NW1 2BE UK; Chromatin Biochemistry Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK

                Article
                ncomms9163
                10.1038/ncomms9163
                4569737
                26348592
                0913e3fb-a375-45b0-976d-7c86b60e83be
                Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 20 March 2015
                : 25 July 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article