11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A 4-Phenoxyphenol Derivative Exerts Inhibitory Effects on Human Hepatocellular Carcinoma Cells through Regulating Autophagy and Apoptosis Accompanied by Downregulating α-Tubulin Expression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hepatocellular carcinoma (HCC) is a leading cancer worldwide. Advanced HCCs are usually resistant to anticancer drugs, causing unsatisfactory chemotherapy outcomes. In this study, we showed that a 4-phenoxyphenol derivative, 4-[4-(4-hydroxyphenoxy)phenoxy]phenol (4-HPPP), exerts an inhibitory activity against two HCC cell lines, Huh7 and Ha22T. We further investigated the anti-HCC activities of 4-HPPP, including anti-proliferation and induction of apoptosis. Our results showed that higher dosage of 4-HPPP downregulates the expression of α-tubulin and causes nuclear enlargement in both the Huh-7 and Ha22T cell lines. Interestingly, the colony formation results showed a discrepancy in the inhibitory effect of 4-HPPP on HCC and rat liver epithelial Clone 9 cells, suggesting the selective cytotoxicity of 4-HPPP toward HCC cells. Furthermore, the cell proliferation and apoptosis assay results illustrated the differences between the two HCC cell lines. The results of cellular proliferation assays, including trypan blue exclusion and colony formation, revealed that 4-HPPP inhibits the growth of Huh7 cells, but exerts less cytotoxicity in Ha22T cells. Furthermore, the annexin V assay performed for detecting the apoptosis showed similar results. Western blotting results showed 4-HPPP caused the increase of pro-apoptotic factors including cleaved caspase-3, Bid and Bax in HCC cells, especially in Huh-7. Furthermore, an increase of autophagy-associated protein microtubule-associated protein-1 light chain-3B (LC3B)-II and the decrease of Beclin-1 and p62/SQSTM1 were observed following 4-HPPP treatment. Additionally, the level of γH2A histone family, member X (γH 2AX), an endogenous DNA damage biomarker, was dramatically increased in Huh7 cells after 4-HPPP treatment, suggesting the involvement of DNA damage pathway in 4-HPPP-induced apoptosis. On the contrary, the western blotting results showed that treatment up-regulates pro-survival proteins, including the phosphorylation of protein kinase B (Akt) and the level of survivin on Ha22T cells, which may confer a resistance toward 4-HPPP. Notably, the blockade of extracellular signal-regulated kinases (ERK), but not Akt, enhanced the cytotoxicity of 4-HPPP against Ha22T cells, indicating the pro-survival role of ERK in 4-HPPP-induced anti-HCC effect. Our present work suggests that selective anti-HCC activity of 4-HPPP acts through induction of DNA damage. Accordingly, the combination of ERK inhibitor may significantly enhance the anti-cancer effect of 4-HPPP for those HCC cells which overexpress ERK in the future.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: the cellular mechanism.

          Extensive studies have revealed that berberine, a small molecule derived from Coptidis rhizoma (Huanglian in Chinese) and many other plants, has strong anti-tumor properties. To better understand berberine-induced cell death and its underlying mechanisms in cancer, we examined autophagy and apoptosis in the human hepatic carcinoma cell lines HepG2 and MHCC97-L. The results of this study indicate that berberine can induce both autophagy and apoptosis in hepatocellular carcinoma cells. Berberine-induced cell death in human hepatic carcinoma cells was diminished in the presence of the cell death inhibitor 3-methyladenine, or following interference with the essential autophagy gene Atg5. Mechanistic studies showed that berberine may activate mitochondrial apoptosis in HepG2 and MHCC97-L cells by increasing Bax expression, the formation of permeable transition pores, cytochrome C release to cytosol, and subsequent activation of the caspases 3 and 9 execution pathway. Berberine may also induce autophagic cell death in HepG2 and MHCC97-L cells through activation of Beclin-1 and inhibition of the mTOR-signaling pathway by suppressing the activity of Akt and up-regulating P38 MAPK signaling. This is the first study to describe the role of Beclin-1 activation and mTOR inhibition in berberine-induced autophagic cell death. These results further demonstrate the potential of berberine as a therapeutic agent in the emerging list of cancer therapies with novel mechanisms. Copyright © 2010 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Arenobufagin, a natural bufadienolide from toad venom, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of PI3K/Akt/mTOR pathway.

            Hepatocellular carcinoma (HCC) is a deadly form of cancer without effective chemotherapy so far. Currently, only sorafenib, a multitargeted tyrosine kinase inhibitor, slightly improves survival in HCC patients. In searching for natural anti-HCC components from toad venom, which is frequently used in the treatment of liver cancer in traditional Chinese medicine, we discovered that arenobufagin, a bufadienolide from toad venom, had potent antineoplastic activity against HCC HepG2 cells as well as corresponding multidrug-resistant HepG2/ADM cells. We found that arenobufagin induced mitochondria-mediated apoptosis in HCC cells, with decreasing mitochondrial potential, as well as increasing Bax/Bcl-2 expression ratio, Bax translocation from cytosol to mitochondria. Arenobufagin also induced autophagy in HepG2/ADM cells. Autophagy-specific inhibitors (3-methyladenine, chloroquine and bafilomycin A1) or Beclin1 and Atg 5 small interfering RNAs (siRNAs) enhanced arenobufagin-induced apoptosis, indicating that arenobufagin-mediated autophagy may protect HepG2/ADM cells from undergoing apoptotic cell death. In addition, we observed the inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway by arenobufagin. Interestingly, inhibition of mTOR by rapamycin or siRNA duplexes augmented arenobufagin-induced apoptosis and autophagy. Finally, arenobufagin inhibited the growth of HepG2/ADM xenograft tumors, which were associated with poly (ADP-ribose) polymerase cleavage, light chain 3-II activation and mTOR inhibition. In summary, we first demonstrated the antineoplastic effect of arenobufagin on HCC cells both in vitro and in vivo. We elucidated the underlying antineoplastic mechanisms of arenobufagin that involve cross talk between apoptosis and autophagy via inhibition of the PI3K/Akt/mTOR pathway. This study may provide a rationale for future clinical application using arenobufagin as a chemotherapeutic agent for HCC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Dietary Polyphenols in Prevention and Treatment of Prostate Cancer

              Prostate cancer is the most prevalent disease affecting males in many Western countries, with an estimated 29,480 deaths in 2014 in the US alone. Incidence rates for prostate cancer deaths have been decreasing since the early 1990s in men of all races/ethnicities, though they remain about 60% higher in African Americans than in any other group. The relationship between dietary polyphenols and the prevention of prostate cancer has been examined previously. Although results are sometimes inconsistent and variable, there is a general agreement that polyphenols hold great promise for the future management of prostate cancer. Various dietary components, including polyphenols, have been shown to possess anti-cancer properties. Generally considered as non-toxic, dietary polyphenols act as key modulators of signaling pathways and are therefore considered ideal chemopreventive agents. Besides possessing various anti-tumor properties, dietary polyphenols also contribute to epigenetic changes associated with the fate of cancer cells and have emerged as potential drugs for therapeutic intervention. Polyphenols have also been shown to affect post-translational modifications and microRNA expressions. This article provides a systematic review of the health benefits of selected dietary polyphenols in prostate cancer, especially focusing on the subclasses of polyphenols, which have a great effect on disease prevention and treatment.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
                MDPI
                1420-3049
                21 May 2017
                May 2017
                : 22
                : 5
                : 854
                Affiliations
                [1 ]Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; wtchang@ 123456kmu.edu.tw (W.-T.C.); chuangsc@ 123456cc.kmu.edu.tw (S.-C.C.)
                [2 ]Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
                [3 ]Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; liuwangta@ 123456kmu.edu.tw (W.L.); bhchen@ 123456kmu.edu.tw (B.-H.C.); shiny_0224@ 123456yahoo.com.tw (Y.-C.C.); 4a1h0007@ 123456stust.edu.tw (Y.-T.H.); fjm11037@ 123456yahoo.com.tw (M.-J.L.); fatchou1988@ 123456hotmail.com (C.-K.C.)
                [4 ]Department of Nursing, St. Mary’s Junior College of Medicine, Nursing and Management, Yi-Lan 266, Taiwan; chiuyiham@ 123456smc.edu.tw
                [5 ]The Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
                [6 ]Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
                [7 ]Transplantation Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
                [8 ]Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; sheanjaw@ 123456cc.kmu.edu.tw
                [9 ]Translational Research Center, Cancer Center, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
                [10 ]Research Center for Environment Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
                [11 ]Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
                [12 ]Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
                Author notes
                [* ]Correspondence: cchiu@ 123456kmu.edu.tw ; Tel.: +886-7-3121-101 (ext. 2368); Fax: +886-7-3125-339
                [†]

                These authors contributed equally to this work.

                Article
                molecules-22-00854
                10.3390/molecules22050854
                6154338
                28531143
                091aea49-f408-4bb7-8a9b-bf782a376e3c
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 December 2016
                : 16 May 2017
                Categories
                Article

                apoptosis,autophagy,erk,4-phenoxyphenol,hcc,α-tubulin,microtubule
                apoptosis, autophagy, erk, 4-phenoxyphenol, hcc, α-tubulin, microtubule

                Comments

                Comment on this article