12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hyperexpandable, self-healing macromolecular crystals with integrated polymer networks

      , , ,
      Nature
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Methane storage in flexible metal-organic frameworks with intrinsic thermal management.

          As a cleaner, cheaper, and more globally evenly distributed fuel, natural gas has considerable environmental, economic, and political advantages over petroleum as a source of energy for the transportation sector. Despite these benefits, its low volumetric energy density at ambient temperature and pressure presents substantial challenges, particularly for light-duty vehicles with little space available for on-board fuel storage. Adsorbed natural gas systems have the potential to store high densities of methane (CH4, the principal component of natural gas) within a porous material at ambient temperature and moderate pressures. Although activated carbons, zeolites, and metal-organic frameworks have been investigated extensively for CH4 storage, there are practical challenges involved in designing systems with high capacities and in managing the thermal fluctuations associated with adsorbing and desorbing gas from the adsorbent. Here, we use a reversible phase transition in a metal-organic framework to maximize the deliverable capacity of CH4 while also providing internal heat management during adsorption and desorption. In particular, the flexible compounds Fe(bdp) and Co(bdp) (bdp(2-) = 1,4-benzenedipyrazolate) are shown to undergo a structural phase transition in response to specific CH4 pressures, resulting in adsorption and desorption isotherms that feature a sharp 'step'. Such behaviour enables greater storage capacities than have been achieved for classical adsorbents, while also reducing the amount of heat released during adsorption and the impact of cooling during desorption. The pressure and energy associated with the phase transition can be tuned either chemically or by application of mechanical pressure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid and reversible shape changes of molecular crystals on photoirradiation.

            The development of actuators based on materials that reversibly change shape and/or size in response to external stimuli has attracted interest for some time. A particularly intriguing possibility is offered by light-responsive materials, which allow remote operation without the need for direct contact to the actuator. The photo-response of these materials is based on the photoisomerization of constituent molecules (typically trans-cis isomerization of azobenzene chromophores), which gives rise to molecular motions and thereby deforms the bulk material. This effect has been used to create light-deformable polymer films and gels, but the response of these systems is relatively slow. Here we report that molecular crystals based on diarylethene chromophores and with sizes ranging from 10 to 100 micrometres exhibit rapid and reversible macroscopic changes in shape and size induced by ultraviolet and visible light. We find that on exposure to ultraviolet light, a single crystal of 1,2-bis(2-ethyl-5-phenyl-3-thienyl)perfluorocyclopentene changes from a square shape to a lozenge shape, whereas a rectangular single crystal of 1,2-bis(5-methyl-2-phenyl-4-thiazolyl)perfluorocyclopentene contracts by about 5-7 per cent. The deformed crystals are thermally stable, and switch back to their original state on irradiation with visible light. We find that our crystals respond in about 25 microseconds (that is, about five orders of magnitude faster than the response time of the azobenzene-based polymer systems) and that they can move microscopic objects, making them promising materials for possible light-driven actuator applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4.

              Functionalizing the well-known MIL-53(Al) metal-organic framework with amino groups increases its selectivity in CO(2)/CH(4) separations by orders of magnitude while maintaining a very high capacity for CO(2) capture.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Nature
                0028-0836
                1476-4687
                May 2018
                May 2 2018
                May 2018
                : 557
                : 7703
                : 86-91
                Article
                10.1038/s41586-018-0057-7
                29720635
                091bbe12-4d78-4ec3-b706-a42196078eab
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article