10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Microfluidic fabrication of multiaxial microvessels via hydrodynamic shaping

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fabrication of small, hydrogel microvessels (radii <250 um) through hydrodynamic shaping and photoinitiated polymerization is demonstrated. Photopolymerized hydrogel microvessels were produced and examined. The process is modular and amenable to generating an array of microvessel sizes and shapes.

          A microfluidic fiber fabrication device was developed to prepare multiaxial microvessels with defined architecture and material constituency. Hydrodynamic focusing using passive wall structures directed biologically relevant macromer solutions into coaxial flow patterns, which were subsequently solidified via photopolymerization. Solid, coaxial, and triaxial microfibers as well as microtubes were generated from the multiaxial flows composed of both synthetic macromers and biomacromolecules.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Capturing complex 3D tissue physiology in vitro.

          The emergence of tissue engineering raises new possibilities for the study of complex physiological and pathophysiological processes in vitro. Many tools are now available to create 3D tissue models in vitro, but the blueprints for what to make have been slower to arrive. We discuss here some of the 'design principles' for recreating the interwoven set of biochemical and mechanical cues in the cellular microenvironment, and the methods for implementing them. We emphasize applications that involve epithelial tissues for which 3D models could explain mechanisms of disease or aid in drug development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Engineering hydrogels as extracellular matrix mimics.

            Extracellular matrix (ECM) is a complex cellular environment consisting of proteins, proteoglycans, and other soluble molecules. ECM provides structural support to mammalian cells and a regulatory milieu with a variety of important cell functions, including assembling cells into various tissues and organs, regulating growth and cell-cell communication. Developing a tailored in vitro cell culture environment that mimics the intricate and organized nanoscale meshwork of native ECM is desirable. Recent studies have shown the potential of hydrogels to mimic native ECM. Such an engineered native-like ECM is more likely to provide cells with rational cues for diagnostic and therapeutic studies. The research for novel biomaterials has led to an extension of the scope and techniques used to fabricate biomimetic hydrogel scaffolds for tissue engineering and regenerative medicine applications. In this article, we detail the progress of the current state-of-the-art engineering methods to create cell-encapsulating hydrogel tissue constructs as well as their applications in in vitro models in biomedicine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metre-long cell-laden microfibres exhibit tissue morphologies and functions.

              Artificial reconstruction of fibre-shaped cellular constructs could greatly contribute to tissue assembly in vitro. Here we show that, by using a microfluidic device with double-coaxial laminar flow, metre-long core-shell hydrogel microfibres encapsulating ECM proteins and differentiated cells or somatic stem cells can be fabricated, and that the microfibres reconstitute intrinsic morphologies and functions of living tissues. We also show that these functional fibres can be assembled, by weaving and reeling, into macroscopic cellular structures with various spatial patterns. Moreover, fibres encapsulating primary pancreatic islet cells and transplanted through a microcatheter into the subrenal capsular space of diabetic mice normalized blood glucose concentrations for about two weeks. These microfibres may find use as templates for the reconstruction of fibre-shaped functional tissues that mimic muscle fibres, blood vessels or nerve networks in vivo.
                Bookmark

                Author and article information

                Journal
                RSCACL
                RSC Adv.
                RSC Adv.
                Royal Society of Chemistry (RSC)
                2046-2069
                2014
                2014
                : 4
                : 45
                : 23440-23446
                Article
                10.1039/C4RA03667K
                091cf140-40e5-4e21-abeb-a436be443a1b
                © 2014
                History

                Comments

                Comment on this article