25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dehydroepiandrosterone administration modulates endothelial and neutrophil adhesion molecule expression in vitro

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          The steroid hormone dehydroepiandrosterone (DHEA) exerts protecting effects in the treatment of traumatic and septic complications in several animal models. This effect goes along with reduced amounts of infiltrating immune cells in organs such as lung and liver. However, the underlying mechanisms of DHEA action are still not known. Adhesion molecules are important for the extravasation of neutrophils into organs where they may exhibit detrimental effects. Therefore, we investigated the in vitro effect of DHEA on the expression pattern of adhesion molecules of human endothelial cells and neutrophils.

          Methods

          Endothelial cells derived from human umbilical cord were subjected to an lipopolysaccharide (LPS) challenge. DHEA was administered in two different concentrations, 10 -5 M and 10 -8 M, as a single stimulus or in combination with LPS challenge. After two, four and 24 hours, fluorescence activated cell sorter (FACS) analysis for vascular cell adhesion molecule-1, intercellular adhesion molecule-1 and E-selectin was performed. Neutrophils were freshly isolated from blood of 10 male healthy volunteers, stimulated the same way as endothelial cells and analyzed for surface expression of L-selectin, CD11b and CD18.

          Results

          In the present study, we were able to demonstrate effects of DHEA on the expression of every adhesion molecule investigated. DHEA exhibits opposite effects to those seen upon LPS exposure. Furthermore, these effects are both time and concentration dependent as most DHEA specific effects could be detected in the physiological concentration of 10 -8 M.

          Conclusion

          Thus, we conclude that one mechanism by which DHEA may exert its protection in animal models is via the differential regulation of adhesion molecule expression.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Phylogenetic perspectives in innate immunity.

          The concept of innate immunity refers to the first-line host defense that serves to limit infection in the early hours after exposure to microorganisms. Recent data have highlighted similarities between pathogen recognition, signaling pathways, and effector mechanisms of innate immunity in Drosophila and mammals, pointing to a common ancestry of these defenses. In addition to its role in the early phase of defense, innate immunity in mammals appears to play a key role in stimulating the subsequent, clonal response of adaptive immunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inflammation, sepsis, and coagulation.

            The molecular links between inflammation and coagulation are unquestioned. Inflammation promotes coagulation by leading to intravascular tissue factor expression, eliciting the expression of leukocyte adhesion molecules on the intravascular cell surfaces, and down regulating the fibrinolytic and protein C anticoagulant pathways. Thrombin, in turn, can promote inflammatory responses. This creates a cycle that logically progresses to vascular injury as occurs in septic shock. Most complex systems are regulated by product inhibition. This inflammation-coagulation cycle seems to follow this same principle with the protein C pathway serving as the regulatory mechanism. The molecular basis by which the protein C pathway functions as an anticoagulant is relatively well established compared to the mechanisms involved in regulating inflammation. As one approach to identifying the mechanisms involved in regulating inflammation, we set out to identify novel receptors that could modulate the specificity of APC in a manner analogous to the mechanisms by which thrombomodulin modulates thrombin specificity. This approach led to the identification of an endothelial cell protein C receptor (EPCR). To understand the mechanism, we obtained a crystal structure of APC (lacking the Gla domain). The crystal structure reveals a deep groove in a location analogous to anion binding exosite 1 of thrombin, the location of interaction for thrombomodulin, platelet thrombin receptor and fibrinogen. Thrombomodulin blocks the activation of platelets and fibrinogen without blocking reactivity with chromogenic substrates or inhibitors. Similarly, in solution, EPCR blocks factor Va inactivation without modulating reactivity with protease inhibitors. Thus, these endothelial cell receptors for the protein C system share many properties in common including the ability to be modulated by inflammatory cytokines. Current studies seek to identify the substrate for the APC-EPCR complex as the next step in elucidating the mechanisms by which the protein C pathway modulates the response to injury and inflammation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Migration inhibitory factor up-regulates vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 via Src, PI3 kinase, and NFkappaB.

              Cell adhesion molecules are critical in monocyte (MN) recruitment in immune-mediated and hematologic diseases. We investigated the novel role of recombinant human migration inhibitory factor (rhMIF) in up-regulating vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) and their signaling pathways in human MNs. rhMIF-induced expression of VCAM-1 and ICAM-1 was significantly higher compared with nonstimulated MNs. rhMIF induced MN VCAM-1 and ICAM-1 expression in a concentration-dependent manner (P < .05). Antisense oligodeoxynucleotides (ODNs) and inhibitors of Src, PI3K, p38, and NFkappaB significantly reduced rhMIF-induced MN VCAM-1 and ICAM-1 expression (P < .05). However, Erk1/2 and Jak2 were not involved. Silencing RNA directed against MIF, and inhibitors of Src, PI3K, NFkappaB, anti-VCAM-1, and anti-ICAM-1 significantly inhibited rhMIF-induced adhesion of HL-60 cells to human dermal microvascular endothelial cells (HMVECs) or an endothelial cell line, HMEC-1, in cell adhesion assays, suggesting the functional significance of MIF-induced adhesion molecules (P < .05). rhMIF also activated MN phospho-Src, -Akt, and -NFkappaB in a time-dependent manner. rhMIF induced VCAM-1 and ICAM-1 up-regulation in 12 hours via Src, PI3K, and NFkappaB as shown by Western blotting and immunofluorescence. MIF and MIF-dependent signaling pathways may be a potential target for treating diseases characterized by up-regulation of cell adhesion molecules.
                Bookmark

                Author and article information

                Journal
                Crit Care
                Critical Care
                BioMed Central (London )
                1364-8535
                1466-609X
                2006
                19 July 2006
                : 10
                : 4
                : R109
                Affiliations
                [1 ]Department of Trauma Surgery, Hanover Medical School, Carl-Neuberg Strasse, D-30625 Hannover, Germany
                [2 ]Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse, A-1200 Vienna, Austria
                Article
                cc4986
                10.1186/cc4986
                1750969
                16859502
                092358ed-ce51-4a55-9592-9552a92b1168
                Copyright © 2006 Barkhausen et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 March 2006
                : 18 May 2006
                : 29 June 2006
                : 11 July 2006
                Categories
                Research

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article