15
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-efficiency liposomal encapsulation of a tyrosine kinase inhibitor leads to improved in vivo toxicity and tumor response profile

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Staurosporine (STS) is a potent pan-kinase inhibitor with marked activity against several chemotherapy-resistant tumor types in vitro. The translational progress of this compound has been hindered by poor pharmacokinetics and toxicity. We sought to determine whether liposomal encapsulation of STS would enhance antitumor efficacy and reduce toxicity, thereby supporting the feasibility of further preclinical development. We developed a novel reverse pH gradient liposomal loading method for STS, with an optimal buffer type and drug-to-lipid ratio. Our approach produced 70% loading efficiency with good retention, and we provide, for the first time, an assessment of the in vivo antitumor activity of STS. A low intravenous dose (0.8 mg/kg) inhibited U87 tumors in a murine flank model. Biodistribution showed preferential tumor accumulation, and body weight data, a sensitive index of STS toxicity, was unaffected by liposomal STS, but did decline with the free compound. In vitro experiments revealed that liposomal STS blocked Akt phosphorylation, induced poly(ADP-ribose) polymerase cleavage, and produced cell death via apoptosis. This study provides a basis to explore further the feasibility of liposomally encapsulated STS, and potentially related compounds for the management of resistant solid tumors.

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          The effect of different lipid components on the in vitro stability and release kinetics of liposome formulations.

          Liposomes are colloidal carriers that form when certain (phospho)lipid molecules are hydrated in an aqueous media with some energy input. The ideal liposome formulation with optimum stability will improve drug delivery by decreasing the required dose and increasing the efficacy of the entrapped drug at the target organ or tissue. The most important parameter of interest in this article was to compare the efficacy of three different liposomes formulated with DSPC, DMPC, and DPPC, all saturated neutral phospholipids with different acyl chain lengths and transition temperatures. DMPC has a phase transition temperature (Tc) below 37 degrees C, whereas the other two phospholipids possess Tcs above the physiological temperature. These lipids were then added to a cholesterol concentration of 21% to optimize the stability of the vesicles. The liposomes were prepared by a sonication and incubated in phosphate buffered saline (PBS) at 4 degrees C and 37 degrees C. The encapsulation efficiency, initial size, and drug retention of the vesicles were tested over a 48-hr period employing radiolabeled inulin as a model drug. The phase transition temperature of liposomes, which depends on the Tc of the constituent lipids, was an important factor in liposome stability. Of all the liposomes tested, the greatest encapsulation efficiency was found for the DSPC liposomes (2.95%) that also had the greatest drug retention over 48 hr at both 4 degrees C (87.1 +/- 6.8%) and 37 degrees C (85.2 +/- 10.1%), none of these values being significantly different from time zero. The lowest drug retention was found for DMPC liposomes for which a significant difference in drug retention was seen after only 15 min at both 4 degrees C (47.3 +/- 6.9%) and 37 degrees C (53.8 +/- 4.3%). The DPPC liposomes showed a significant difference in drug retention after 3 hr at 4 degrees C (62.1 +/- 8.2%) and after 24 hr at 37 degrees C (60.8 +/- 8.9%). Following the initial drop at certain time intervals a plateau was reached for all of the liposome formulations after which no significant difference in drug retention was observed. In conclusion, liposomes with higher transition temperatures appear to be more stable in PBS either at 4 degrees C or 37 degrees C, indicating that the increase in acyl chain length (and therefore transition temperature) is directly proportional to stability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Analysis of rodent growth data in toxicology studies.

            To evaluate compound-related effects on the growth of rodents, body weight and food consumption data are commonly collected either weekly or biweekly in toxicology studies. Body weight gain, food consumption relative to body weight, and efficiency of food utilization can be derived from body weight and food consumption for each animal in an attempt to better understand the compound-related effects. These five parameters are commonly analyzed in toxicology studies for each sex using a one-factor analysis of variance (ANOVA) at each collection point. The objective of this manuscript is to present an alternative approach to the evaluation of compound-related effects on body weight and food consumption data from both subchronic and chronic rodent toxicology studies. This approach is to perform a repeated-measures ANOVA on a selected set of parameters and analysis intervals. Compared with a standard one-factor ANOVA, this approach uses a statistical analysis method that has greater power and reduces the number of false-positive claims, and consequently provides a succinct yet comprehensive summary of the compound-related effects. Data from a mouse carcinogenicity study are included to illustrate this repeated-measures ANOVA approach to analyzing growth data in contrast with the one-factor ANOVA approach.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Preparation and characterization of doxorubicin liposomes.

              During nanoparticle system in drug delivery, liposomes were perhaps the best characterized and one of the first to be developed. Stealth liposomes (SLs), containing polyethylene glycol-conjugated lipid, which can form a hydro-layer around liposomes bilayer, have a long circulation time and hence result in enhanced drug efficiency. Doxorubicin (DOX), an effective anticancer drug, can be loaded into liposomes by transmembrane pH gradient method to get high encapsulation efficiency with high drug/lipid ratio. Liposomal doxorubicin is a successful clinical formulation, and also a perfect model drug system for cancer-therapy research. Here we described the preparation of SLs via extrusion, DOX loading by transmembrane pH gradient method, and characterization analysis, including phospholipid concentration, size, transmission electronic microscopy graph, encapsulation efficiency, and in vitro drug release.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2013
                2013
                21 October 2013
                : 8
                : 3991-4006
                Affiliations
                [1 ]Translational Neuro-Oncology Laboratories, Moores Cancer Center, UC San Diego, La Jolla, CA, USA
                [2 ]Department of Neurosciences, Moores Cancer Center, UC San Diego, La Jolla, CA, USA
                [3 ]Solid Tumor Therapeutics Program, Moores Cancer Center, UC San Diego, La Jolla, CA, USA
                [4 ]Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Denver, CO, USA
                Author notes
                Correspondence: Santosh Kesari Moores Cancer Center, UC San Diego, 3855 Health Sciences Drive, MC#0819, La Jolla, CA 92093-0819, USA, Tel +1 858 822 7524, Fax +1 858 822 3033, Email skesari@ 123456ucsd.edu
                Milan Makale, Moores Cancer Center, UC San Diego, 3855 Health Sciences Drive, MC#0819, La Jolla, CA 92093-0819, USA, Tel +1 858 822 6922, Fax +1 858 822 0022, Email mmakale@ 123456ucsd.edu
                Article
                ijn-8-3991
                10.2147/IJN.S51949
                3808212
                24174874
                09264da5-1bc1-4ce6-bd3e-2bb4271d4b2d
                © 2013 Mukthavaram et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Molecular medicine
                liposomes,staurosporine,glioblastoma,biodistribution,efficacy
                Molecular medicine
                liposomes, staurosporine, glioblastoma, biodistribution, efficacy

                Comments

                Comment on this article