39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Topical Vitamin C: A Useful Agent for Treating Photoaging and Other Dermatologic Conditions

      Dermatologic Surgery
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cosmeceuticals containing antioxidants are among the most popular antiaging remedies. Topically applied antioxidants exert their benefits by offering protection from damaging free radicals produced when skin is exposed to ultraviolet light or allowed to age naturally. Vitamin C is a naturally occurring potent water-soluble antioxidant. Accordingly, it has been incorporated into a variety of cosmeceuticals designed to protect and rejuvenate photoaged skin. This article reviews the scientific data and clinical studies supporting the use of topically applied vitamin C for treating photoaged skin. Other innovative uses for vitamin C cosmeceuticals are also discussed. A significant body of scientific research supports the use of cosmeceuticals containing vitamin C. Cutaneous benefits include promoting collagen synthesis, photoprotection from ultraviolet A and B, lightening hyperpigmentation, and improvement of a variety of inflammatory dermatoses. Because of the diverse biologic effects of this compound, topical vitamin C has become a useful part of the dermatologist's armamentarium.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Topically applied vitamin C enhances the mRNA level of collagens I and III, their processing enzymes and tissue inhibitor of matrix metalloproteinase 1 in the human dermis.

          Ascorbic acid (vitamin C) is a cofactor required for the function of several hydroxylases and monooxygenases. It is not synthesized in humans and some other animal species and has to be provided by diet or pharmacologic means. Its absence is responsible for scurvy, a condition related in its initial phases to a defective synthesis of collagen by the reduced function of prolylhydroxylase and production of collagen polypeptides lacking hydroxyproline, therefore, they are unable to assemble into stable triple-helical collagen molecules. In fibroblast cultures, vitamin C also stimulates collagen production by increasing the steady-state level of mRNA of collagen types I and III through enhanced transcription and prolonged half-life of the transcripts. The aim of the experimental work has been to evaluate the effect on dermal cells of a preparation of vitamin C topically applied on one side vs placebo on the other side of the dorsal face of the upper forearm of postmenopausal women. Biopsies were collected on both sides and the level of mRNA measured by non competitive reverse transcription-polymerase chain reaction made quantitative by the simultaneous transcription and amplification of synthetic RNA used as internal standards. The mRNA of collagen type I and type III were increased to a similar extent by vitamin C and that of three post-translational enzymes, the carboxy- and amino-procollagen proteinases and lysyloxidase similarly increased. The mRNA of decorin was also stimulated, but elastin, and fibrillin 1 and 2 were not modified by the vitamin. The expression of matrix metalloproteinases 1, 2, and 9 was not significantly changed, but an increased level of tissue inhibitor of matrix metalloproteinase 1 mRNA was observed without modification of tissue inhibitor of matrix metalloproteinase 2 mRNA. The stimulating activity of topical vitamin C was most conspicuous in the women with the lowest dietary intake of the vitamin and unrelated to the level of actinic damage. The results indicate that the functional activity of the dermal cells is not maximal in postmenopausal women and can be increased.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Enzymic and Non-Enzymic Antioxidants in Epidermis and Dermis of Human Skin

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protection and recycling of alpha-tocopherol in human erythrocytes by intracellular ascorbic acid.

              Ascorbic acid can recycle alpha-tocopherol from the tocopheroxyl free radical in lipid bilayers and in micelles, but such recycling has not been demonstrated to occur across cell membranes. In this work the ability of intracellular ascorbate to protect and to recycle alpha-tocopherol in intact human erythrocytes and erythrocyte ghosts was investigated. In erythrocytes that were 80% depleted of intracellular ascorbate by treatment with the nitroxide Tempol, both 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) and ferricyanide oxidized alpha-tocopherol to a greater extent than in cells not depleted of ascorbate. In contrast, in erythrocytes in which the intracellular ascorbate concentration had been increased by loading with dehydroascorbate, loss of alpha-tocopherol was less with both oxidants than in control cells. Protection against AAPH-induced oxidation of alpha-tocopherol was not prevented by extracellular ascorbate oxidase, indicating that the protection was due to intracellular and not to extracellular ascorbate. Incubation of erythrocytes with lecithin liposomes also generated an oxidant stress, which caused lipid peroxidation in the liposomes and depleted erythrocyte alpha-tocopherol, leading to hemolysis. Ascorbate loading of the erythrocytes delayed liposome oxidation and decreased loss of alpha-tocopherol from both cells and from alpha-tocopherol-loaded liposomes. When erythrocyte ghosts were resealed to contain ascorbate and challenged with free radicals generated by AAPH outside the ghosts, intravesicular ascorbate was totally depleted over 1 h of incubation, whereas alpha-tocopherol decreased only after ascorbate was substantially oxidized. These results suggest that ascorbate within the erythrocyte protects alpha-tocopherol in the cell membrane by a direct recycling mechanism.
                Bookmark

                Author and article information

                Journal
                Dermatologic Surgery
                Dermatologic Surgery
                Wiley
                10760512
                July 2005
                March 21 2006
                : 31
                : 814-818
                Article
                10.1111/j.1524-4725.2005.31725
                16029672
                093af1c8-d49a-4920-becc-efba2cd96069
                © 2006
                History

                Comments

                Comment on this article