4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Degradation of Recalcitrant Polyurethane and Xenobiotic Additives by a Selected Landfill Microbial Community and Its Biodegradative Potential Revealed by Proximity Ligation-Based Metagenomic Analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polyurethanes (PU) are the sixth most produced plastics with around 18-million tons in 2016, but since they are not recyclable, they are burned or landfilled, generating damage to human health and ecosystems. To elucidate the mechanisms that landfill microbial communities perform to attack recalcitrant PU plastics, we studied the degradative activity of a mixed microbial culture, selected from a municipal landfill by its capability to grow in a water PU dispersion (WPUD) as the only carbon source, as a model for the BP8 landfill microbial community. The WPUD contains a polyether-polyurethane-acrylate (PE-PU-A) copolymer and xenobiotic additives ( N-methylpyrrolidone, isopropanol and glycol ethers). To identify the changes that the BP8 microbial community culture generates to the WPUD additives and copolymer, we performed chemical and physical analyses of the biodegradation process during 25 days of cultivation. These analyses included Nuclear magnetic resonance, Fourier transform infrared spectroscopy, Thermogravimetry, Differential scanning calorimetry, Gel permeation chromatography, and Gas chromatography coupled to mass spectrometry techniques. Moreover, for revealing the BP8 community structure and its genetically encoded potential biodegradative capability we also performed a proximity ligation-based metagenomic analysis. The additives present in the WPUD were consumed early whereas the copolymer was cleaved throughout the 25-days of incubation. The analysis of the biodegradation process and the identified biodegradation products showed that BP8 cleaves esters, C-C, and the recalcitrant aromatic urethanes and ether groups by hydrolytic and oxidative mechanisms, both in the soft and the hard segments of the copolymer. The proximity ligation-based metagenomic analysis allowed the reconstruction of five genomes, three of them from novel species. In the metagenome, genes encoding known enzymes, and putative enzymes and metabolic pathways accounting for the biodegradative activity of the BP8 community over the additives and PE-PU-A copolymer were identified. This is the first study revealing the genetically encoded potential biodegradative capability of a microbial community selected from a landfill, that thrives within a WPUD system and shows potential for bioremediation of polyurethane- and xenobiotic additives-contamitated sites.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          A large-scale evaluation of algorithms to calculate average nucleotide identity.

          Average nucleotide identity (ANI) is a category of computational analysis that can be used to define species boundaries of Archaea and Bacteria. Calculating ANI usually involves the fragmentation of genome sequences, followed by nucleotide sequence search, alignment, and identity calculation. The original algorithm to calculate ANI used the BLAST program as its search engine. An improved ANI algorithm, called OrthoANI, was developed to accommodate the concept of orthology. Here, we compared four algorithms to compute ANI, namely ANIb (ANI algorithm using BLAST), ANIm (ANI using MUMmer), OrthoANIb (OrthoANI using BLAST) and OrthoANIu (OrthoANI using USEARCH) using >100,000 pairs of genomes with various genome sizes. By comparing values to the ANIb that is considered a standard, OrthoANIb and OrthoANIu exhibited good correlation in the whole range of ANI values. ANIm showed poor correlation for ANI of <90%. ANIm and OrthoANIu runs faster than ANIb by an order of magnitude. When genomes that are larger than 7 Mbp were analysed, the run-times of ANIm and OrthoANIu were shorter than that of ANIb by 53- and 22-fold, respectively. In conclusion, ANI calculation can be greatly sped up by the OrthoANIu method without losing accuracy. A web-service that can be used to calculate OrthoANIu between a pair of genome sequences is available at http://www.ezbiocloud.net/tools/ani . For large-scale calculation and integration in bioinformatics pipelines, a standalone JAVA program is available for download at http://www.ezbiocloud.net/tools/orthoaniu .
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Degradation of alkanes by bacteria.

            Pollution of soil and water environments by crude oil has been, and is still today, an important problem. Crude oil is a complex mixture of thousands of compounds. Among them, alkanes constitute the major fraction. Alkanes are saturated hydrocarbons of different sizes and structures. Although they are chemically very inert, most of them can be efficiently degraded by several microorganisms. This review summarizes current knowledge on how microorganisms degrade alkanes, focusing on the biochemical pathways used and on how the expression of pathway genes is regulated and integrated within cell physiology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Surface-active agents from two bacillus species.

              Two Bacillus species were studied which produced bioemulsifiers; however, they were distinctly different compounds. Bacillus sp. strain IAF 343 produced unusually high yields of extracellular biosurfactant when grown on a medium containing only water-soluble substrates. The yield of 1 g/liter was appreciably better than those of most of the biosurfactants reported previously. This neutral lipid product, unlike most lipid biosurfactants, had significant emulsifying properties. It did not appreciably lower the surface tension of water. On the same medium, Bacillus cereus IAF 346 produced a more conventional polysaccharide bioemulsifier, but it also produced a monoglyceride biosurfactant. The bioemulsifier contained substantial amounts of glucosamine and originated as part of the capsule layer. The monoglyceride lowered the surface tension of water to 28 mN/m. It formed a strong association with the polysaccharide, and it was necessary to use ultrafiltration to effect complete separation. The removal of the monoglyceride caused the polysaccharide to precipitate. It is suggested that earlier reports of biopolymers which both stabilized emulsions and lowered surface tension were actually similar aggregates of lipid and bioemulsifier.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                22 January 2020
                2019
                : 10
                : 2986
                Affiliations
                [1] 1Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México , Mexico City, Mexico
                [2] 2Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México , Mexico City, Mexico
                [3] 3Phase Genomics Inc. , Seattle, WA, United States
                [4] 4Departamento de Ingeniería Química, Facultad de Química, Universidad Nacional Autónoma de México , Mexico City, Mexico
                Author notes

                Edited by: Ren Wei, University of Greifswald, Germany

                Reviewed by: Wei-Min Wu, Stanford University, United States; Gabriela Vázquez-Rodríguez, Autonomous University of the State of Hidalgo, Mexico

                *Correspondence: Herminia Loza-Tavera, hlozat@ 123456unam.mx

                These authors have contributed equally to this work

                This article was submitted to Microbiotechnology, Ecotoxicology and Bioremediation, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.02986
                6987047
                32038514
                0944ad48-7cc8-4c42-9326-825f28038d93
                Copyright © 2020 Gaytán, Sánchez-Reyes, Burelo, Vargas-Suárez, Liachko, Press, Sullivan, Cruz-Gómez and Loza-Tavera.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 September 2019
                : 10 December 2019
                Page count
                Figures: 7, Tables: 4, Equations: 0, References: 70, Pages: 19, Words: 0
                Funding
                Funded by: National Institute of Allergy and Infectious Diseases 10.13039/100000060
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                biodegradation,microbial community,polyether-polyurethane-acrylate,xenobiotic additives,metagenomics,hi-c proximity-ligation,community structure,biodegradative potential

                Comments

                Comment on this article