9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Numerical modeling of the distribution of virus carrying saliva droplets during sneeze and cough

      research-article
      a) ,
      Physics of Fluids
      AIP Publishing LLC

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Violent respiratory diseases, i.e., coronavirus (COVID-19), spread through saliva in coughs and sneezes or are even exhaled in the form of microbial pathogen micro-droplets. Therefore, in this work, a comprehensive fully coupled Eulerian–Lagrangian method has been applied for infection control, thus leading to a deeper understanding of the saliva-disease-carrier droplet transmission mechanisms and also of their trajectory tracking by using the OpenFOAM package. This model determines the droplet–air interactions, the breakup process, and turbulent dispersion forces on each micro-droplet that is expelled within the respiratory tract in a correct way. By examining a broad range of initial velocities, size distributions, injection angles of saliva micro-droplets, and mouth opening areas, we predict the maximum opening area that can be driven by micro-droplets. One important contribution of this work is to present a correlation for the length and width of the overall direct maximum reach of the micro-droplets, driven by a wide range of mild coughs to intense sneezes. Our results indicate that the movement of the expelled droplets is mainly influenced by their size, angle, velocity, and environmental factors. During a virus crisis, like COVID-19, this paper can be used to determine the “social distance” between individuals to avoid contamination, by inhaling or touching their bodies, due to these saliva-disease-carrier droplets in sneezing, at various social distance positions such as face-to-face, meeting standing, and near equipment. The safe distance must be increased to around 4 m during a sneeze. By wearing a face mask and by bending the head during a sneeze as a protective action, we can reduce the contamination area to one-third and three-quarters, respectively. Furthermore, the dispersion of the film of the expelled saliva micro-droplets and the spatial relationship between the subjects, which affects the airflow inside the room, are also analyzed in detail.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1

          To the Editor: A novel human coronavirus that is now named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (formerly called HCoV-19) emerged in Wuhan, China, in late 2019 and is now causing a pandemic. 1 We analyzed the aerosol and surface stability of SARS-CoV-2 and compared it with SARS-CoV-1, the most closely related human coronavirus. 2 We evaluated the stability of SARS-CoV-2 and SARS-CoV-1 in aerosols and on various surfaces and estimated their decay rates using a Bayesian regression model (see the Methods section in the Supplementary Appendix, available with the full text of this letter at NEJM.org). SARS-CoV-2 nCoV-WA1-2020 (MN985325.1) and SARS-CoV-1 Tor2 (AY274119.3) were the strains used. Aerosols (<5 μm) containing SARS-CoV-2 (105.25 50% tissue-culture infectious dose [TCID50] per milliliter) or SARS-CoV-1 (106.75-7.00 TCID50 per milliliter) were generated with the use of a three-jet Collison nebulizer and fed into a Goldberg drum to create an aerosolized environment. The inoculum resulted in cycle-threshold values between 20 and 22, similar to those observed in samples obtained from the upper and lower respiratory tract in humans. Our data consisted of 10 experimental conditions involving two viruses (SARS-CoV-2 and SARS-CoV-1) in five environmental conditions (aerosols, plastic, stainless steel, copper, and cardboard). All experimental measurements are reported as means across three replicates. SARS-CoV-2 remained viable in aerosols throughout the duration of our experiment (3 hours), with a reduction in infectious titer from 103.5 to 102.7 TCID50 per liter of air. This reduction was similar to that observed with SARS-CoV-1, from 104.3 to 103.5 TCID50 per milliliter (Figure 1A). SARS-CoV-2 was more stable on plastic and stainless steel than on copper and cardboard, and viable virus was detected up to 72 hours after application to these surfaces (Figure 1A), although the virus titer was greatly reduced (from 103.7 to 100.6 TCID50 per milliliter of medium after 72 hours on plastic and from 103.7 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). The stability kinetics of SARS-CoV-1 were similar (from 103.4 to 100.7 TCID50 per milliliter after 72 hours on plastic and from 103.6 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). On copper, no viable SARS-CoV-2 was measured after 4 hours and no viable SARS-CoV-1 was measured after 8 hours. On cardboard, no viable SARS-CoV-2 was measured after 24 hours and no viable SARS-CoV-1 was measured after 8 hours (Figure 1A). Both viruses had an exponential decay in virus titer across all experimental conditions, as indicated by a linear decrease in the log10TCID50 per liter of air or milliliter of medium over time (Figure 1B). The half-lives of SARS-CoV-2 and SARS-CoV-1 were similar in aerosols, with median estimates of approximately 1.1 to 1.2 hours and 95% credible intervals of 0.64 to 2.64 for SARS-CoV-2 and 0.78 to 2.43 for SARS-CoV-1 (Figure 1C, and Table S1 in the Supplementary Appendix). The half-lives of the two viruses were also similar on copper. On cardboard, the half-life of SARS-CoV-2 was longer than that of SARS-CoV-1. The longest viability of both viruses was on stainless steel and plastic; the estimated median half-life of SARS-CoV-2 was approximately 5.6 hours on stainless steel and 6.8 hours on plastic (Figure 1C). Estimated differences in the half-lives of the two viruses were small except for those on cardboard (Figure 1C). Individual replicate data were noticeably “noisier” (i.e., there was more variation in the experiment, resulting in a larger standard error) for cardboard than for other surfaces (Fig. S1 through S5), so we advise caution in interpreting this result. We found that the stability of SARS-CoV-2 was similar to that of SARS-CoV-1 under the experimental circumstances tested. This indicates that differences in the epidemiologic characteristics of these viruses probably arise from other factors, including high viral loads in the upper respiratory tract and the potential for persons infected with SARS-CoV-2 to shed and transmit the virus while asymptomatic. 3,4 Our results indicate that aerosol and fomite transmission of SARS-CoV-2 is plausible, since the virus can remain viable and infectious in aerosols for hours and on surfaces up to days (depending on the inoculum shed). These findings echo those with SARS-CoV-1, in which these forms of transmission were associated with nosocomial spread and super-spreading events, 5 and they provide information for pandemic mitigation efforts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Presumed Asymptomatic Carrier Transmission of COVID-19

            This study describes possible transmission of novel coronavirus disease 2019 (COVID-19) from an asymptomatic Wuhan resident to 5 family members in Anyang, a Chinese city in the neighboring province of Hubei.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID-19

                Bookmark

                Author and article information

                Contributors
                Journal
                Phys Fluids (1994)
                Phys Fluids (1994)
                PHFLE6
                Physics of Fluids
                AIP Publishing LLC
                1070-6631
                1089-7666
                01 August 2020
                11 August 2020
                11 August 2020
                : 32
                : 8
                : 083305
                Affiliations
                Department of Electromechanical Engineering, C-MAST (Center for Mechanical and Aerospace Sciences and Technologies), University of Beira Interior , Covilhã, Castelo Branco 6201-001, Portugal
                Author notes
                [a) ]Author to whom correspondence should be addressed: m.reza.pendar@ 123456ubi.pt . Tel.: +351925467631. Fax: +351275329972
                Author information
                http://orcid.org/0000-0001-9652-771X
                http://orcid.org/0000-0001-7019-3766
                Article
                5.0018432 POF20-AR-FATV2020-01727
                10.1063/5.0018432
                8726427
                09456ef0-6e04-46ea-b430-13cd3900d235
                © 2020 Author(s)

                Published under license by AIP Publishing.

                1070-6631/2020/32(8)/083305/18/ $30.00

                All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/ ).

                History
                : 15 June 2020
                : 14 July 2020
                Page count
                Pages: 18
                Funding
                Funded by: University of Beira Interior
                Award ID: POCI-01-0247-FEDER-026653
                Categories
                ARTICLES
                Particulate, Multiphase, and Granular Flows
                Custom metadata

                Comments

                Comment on this article