1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Overexpression of microRNA-141 inhibits osteoporosis in the jawbones of ovariectomized rats by regulating the Wnt/β-catenin pathway

      ,
      Archives of Oral Biology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Treatment of Low Bone Density or Osteoporosis to Prevent Fractures in Men and Women: A Clinical Practice Guideline Update from the American College of Physicians.

          This guideline updates the 2008 American College of Physicians (ACP) recommendations on treatment of low bone density and osteoporosis to prevent fractures in men and women. This guideline is endorsed by the American Academy of Family Physicians.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of estrogen plus progestin on risk of fracture and bone mineral density: the Women's Health Initiative randomized trial.

            In the Women's Health Initiative trial of estrogen-plus-progestin therapy, women assigned to active treatment had fewer fractures. To test the hypothesis that the relative risk reduction of estrogen plus progestin on fractures differs according to risk factors for fractures. Randomized controlled trial (September 1993-July 2002) in which 16 608 postmenopausal women aged 50 to 79 years with an intact uterus at baseline were recruited at 40 US clinical centers and followed up for an average of 5.6 years. Women were randomly assigned to receive conjugated equine estrogen, 0.625 mg/d, plus medroxyprogesterone acetate, 2.5 mg/d, in 1 tablet (n = 8506) or placebo (n = 8102). All confirmed osteoporotic fracture events that occurred from enrollment to discontinuation of the trial (July 7, 2002); bone mineral density (BMD), measured in a subset of women (n = 1024) at baseline and years 1 and 3; and a global index, developed to summarize the balance of risks and benefits to test whether the risk-benefit profile differed across tertiles of fracture risk. Seven hundred thirty-three women (8.6%) in the estrogen-plus-progestin group and 896 women (11.1%) in the placebo group experienced a fracture (hazard ratio [HR], 0.76; 95% confidence interval [CI], 0.69-0.83). The effect did not differ in women stratified by age, body mass index, smoking status, history of falls, personal and family history of fracture, total calcium intake, past use of hormone therapy, BMD, or summary fracture risk score. Total hip BMD increased 3.7% after 3 years of treatment with estrogen plus progestin compared with 0.14% in the placebo group (P<.001). The HR for the global index was similar across tertiles of the fracture risk scale (lowest fracture risk tertile, HR, 1.20; 95% CI, 0.93-1.58; middle tertile, HR, 1.23; 95% CI, 1.04-1.46; highest tertile, HR, 1.03; 95% CI, 0.88-1.24) (P for interaction =.54). This study demonstrates that estrogen plus progestin increases BMD and reduces the risk of fracture in healthy postmenopausal women. The decreased risk of fracture attributed to estrogen plus progestin appeared to be present in all subgroups of women examined. When considering the effects of hormone therapy on other important disease outcomes in a global model, there was no net benefit, even in women considered to be at high risk of fracture.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prevention and treatment of postmenopausal osteoporosis.

              In the beginning, that is from the 1960's, when a link between menopause and osteoporosis was first identified; estrogen treatment was the standard for preventing bone loss, however there was no fracture data, even though it was thought to be effective. This continued until the Women's Health Initiative (WHI) study in 2001 that published data on 6 years of treatment with hormone therapy that showed an increase in heart attacks and breast cancer. Even though the risks were small, 1 per 1500 users annually, patients were worried and there was a large drop off in estrogen use. In later analyses the WHI study showed that estrogen reduced fractures and actually prevented heart attacks in the 50-60 year age group. Estrogen alone appeared to be safer to use than estrogen+the progestin medroxyprogesterone acetate and actually reduced breast cancer. At the same time other drugs were being developed for bone that belong to the bisphosphonate group and the first generation of compounds showed moderate potency on bone resorption. The second and third generation compounds were much more potent and in a series of large trials were shown to reduce fractures. For the last 15 years the treatment of osteoporosis belonged to the bisphosphonate compounds, most of which reduce fracture rates by 50 percent. With the exception of gastrointestinal irritation the drugs are well tolerated and highly effective. The sophistication of the delivery systems now allow treatment that can be given daily, weekly, monthly and annually either orally or intravenously. Bone remodeling is a dynamic process that repairs microfractures and replaces old bone with new bone. In the last 10 years there has been a remarkable understanding of bone biology so that new therapies can be specifically designed on a biological basis. The realization that RANKL was the final cytokine involved in the resorption process and that marrow cells produced a natural antagonist called Osteoprotegerin (OPG) quickly led to two lines of therapy. First OPG was used as a therapy to block RANKL was initially successful but later antibodies against OPG developed and this line of treatment had to be discontinued. The next step was to develop a monoclonal antibody against RANKL and this proved to be highly effective in blocking bone resorption. It led to development of a drug Denosumab that successfully reduces fractures and is now one of the therapeutic options for osteoporosis treatment. On the anabolic side bone biology research showed that osteocytes produces sclerostin an inhibitor of the anabolic WNT signaling pathway. Recent development of a monoclonal antibody against sclerostin has shown remarkable anabolic activity in bone showing large increases in bone density and fracture trials are now underway. The newer treatments for osteoporosis are likely to be based on our understanding of bone biology and the design of new highly specific compounds with fewer side effects. This review summarizes the diagnosis of postmenopausal osteoporosis and various available non-pharmacological and pharmacological therapies available for its management. This article is part of a Special Issue entitled 'Menopause'.
                Bookmark

                Author and article information

                Journal
                Archives of Oral Biology
                Archives of Oral Biology
                Elsevier BV
                00039969
                May 2020
                May 2020
                : 113
                : 104713
                Article
                10.1016/j.archoralbio.2020.104713
                32229339
                094a0106-1631-42a4-9b60-c26b8f880161
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article