9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Complete Genome Sequence of Ehrlichia canis Strain YZ-1, Isolated from a Beagle with Fever and Thrombocytopenia

      brief-report
      a , a , b ,
      Genome Announcements
      American Society for Microbiology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          We report the complete genome sequence of Ehrlichia canis strain YZ-1, which was isolated from a beagle with fever, anorexia, depression, lethargy, weight loss, and thrombocytopenia. E. canis is the tick-borne agent of canine and human monocytic ehrlichiosis.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and 'HGE agent' as subjective synonyms of Ehrlichia phagocytophila.

          The genera Anaplasma, Ehrlichia, Cowdria, Neorickettsia and Wolbachia encompass a group of obligate intracellular bacteria that reside in vacuoles of eukaryotic cells and were previously placed in taxa based upon morphological, ecological, epidemiological and clinical characteristics. Recent genetic analyses of 16S rRNA genes, groESL and surface protein genes have indicated that the existing taxa designations are flawed. All 16S rRNA gene and groESL sequences deposited in GenBank prior to 2000 and selected sequences deposited thereafter were aligned and phylogenetic trees and bootstrap values were calculated using the neighbour-joining method and compared with trees generated with maximum-probability, maximum-likelihood, majority-rule consensus and parsimony methods. Supported by bootstrap probabilities of at least 54%, 16S rRNA gene comparisons consistently clustered to yield four distinct clades characterized roughly as Anaplasma (including the Ehrlichia phagocytophila group, Ehrlichia platys and Ehrlichia bovis) with a minimum of 96.1% similarity, Ehrlichia (including Cowdria ruminantium) with a minimum of 97.7% similarity, Wolbachia with a minimum of 95.6% similarity and Neorickettsia (including Ehrlichia sennetsu and Ehrlichia risticii) with a minimum of 94.9% similarity. Maximum similarity between clades ranged from 87.1 to 94.9%. Insufficient differences existed among E. phagocytophila, Ehrlichia equi and the human granulocytic ehrlichiosis (HGE) agent to support separate species designations, and this group was at least 98.2% similar to any Anaplasma species. These 16S rRNA gene analyses are strongly supported by similar groESL clades, as well as biological and antigenic characteristics. It is proposed that all members of the tribes Ehrlichieae and Wolbachieae be transferred to the family Anaplasmataceae and that the tribe structure of the family Rickettsiaceae be eliminated. The genus Anaplasma should be emended to include Anaplasma (Ehrlichia) phagocytophila comb. nov. (which also encompasses the former E. equi and the HGE agent), Anaplasma (Ehrlichia) bovis comb. nov. and Anaplasma (Ehrlichia) platys comb. nov., the genus Ehrlichia should be emended to include Ehrlichia (Cowdria) ruminantium comb. nov. and the genus Neorickettsia should be emended to include Neorickettsia (Ehrlichia) risticii comb. nov. and Neorickettsia (Ehrlichia) sennetsu comb. nov.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Ori-Finder: A web-based system for finding oriCs in unannotated bacterial genomes

            Background Chromosomal replication is the central event in the bacterial cell cycle. Identification of replication origins (oriCs) is necessary for almost all newly sequenced bacterial genomes. Given the increasing pace of genome sequencing, the current available software for predicting oriCs, however, still leaves much to be desired. Therefore, the increasing availability of genome sequences calls for improved software to identify oriCs in newly sequenced and unannotated bacterial genomes. Results We have developed Ori-Finder, an online system for finding oriCs in bacterial genomes based on an integrated method comprising the analysis of base composition asymmetry using the Z-curve method, distribution of DnaA boxes, and the occurrence of genes frequently close to oriCs. The program can also deal with unannotated genome sequences by integrating the gene-finding program ZCURVE 1.02. Output of the predicted results is exported to an HTML report, which offers convenient views on the results in both graphical and tabular formats. Conclusion A web-based system to predict replication origins of bacterial genomes has been presented here. Based on this system, oriC regions have been predicted for the bacterial genomes available in GenBank currently. It is hoped that Ori-Finder will become a useful tool for the identification and analysis of oriCs in both bacterial and archaeal genomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular and cellular pathobiology of Ehrlichia infection: targets for new therapeutics and immunomodulation strategies.

              Ehrlichia are small obligately intracellular bacteria in the order Rickettsiales that are transmitted by ticks and associated with emerging life-threatening human zoonoses. Vaccines are not available for human ehrlichiosis, and therapeutic options are limited to a single antibiotic class. New technologies for exploring host-pathogen interactions have yielded recent advances in understanding the molecular interactions between Ehrlichia and the eukaryotic host cell and identified new targets for therapeutic and vaccine development, including those that target pathogen virulence mechanisms or disrupt the processes associated with ehrlichial effector proteins. Animal models have also provided insight into immunopathological mechanisms that contribute significantly to understanding severe disease manifestations, which should lead to the development of immunomodulatory approaches for treating patients nearing or experiencing severe disease states. In this review, we discuss the recent advances in our understanding of molecular and cellular pathobiology and the immunobiology of Ehrlichia infection. We identify new molecular host-pathogen interactions that can be targets of new therapeutics, and discuss prospects for treating the immunological dysregulation during acute infection that leads to life-threatening complications.
                Bookmark

                Author and article information

                Journal
                Genome Announc
                Genome Announc
                ga
                ga
                GA
                Genome Announcements
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2169-8287
                1 March 2018
                March 2018
                : 6
                : 9
                : e00133-18
                Affiliations
                [a ]College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
                [b ]College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
                Author notes
                Address correspondence to Chengming Wang, wangche@ 123456auburn.edu .
                Author information
                https://orcid.org/0000-0001-7874-8340
                Article
                genomeA00133-18
                10.1128/genomeA.00133-18
                5834329
                29496840
                094b71f7-e128-416a-abd8-4117b08b0a2b
                Copyright © 2018 Zhang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 31 January 2018
                : 8 February 2018
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 9, Pages: 2, Words: 1212
                Funding
                Funded by: National Natural Science Foundation of China (NSFC), https://doi.org/10.13039/501100001809;
                Award ID: 31472225
                Award Recipient :
                Categories
                Prokaryotes
                Custom metadata
                March 2018

                Genetics
                Genetics

                Comments

                Comment on this article