289
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrin-Specific Control of Focal Adhesion Kinase and RhoA Regulates Membrane Protrusion and Invasion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cell invasion through extracellular matrix (ECM) is a hallmark of the metastatic cascade. Cancer cells require adhesion to surrounding tissues for efficient migration to occur, which is mediated through the integrin family of receptors. Alterations in expression levels of β1 and β3 integrins have previously been reported in a number of human cancers. However, whether there are specific roles for these ubiquitous receptors in mediating cell invasion remains unclear. Here we demonstrate that loss of β1 but not β3 integrins leads to increased spread cell area and focal adhesion number in cells on 2D immobilized fibronectin. Increased adhesion numbers in β1 knockdown cells correlated with decreased cell migration on 2D surfaces. Conversely, cells depleted of β1 integrins showed increased migration speed on 3D cell-derived matrix as well as in 3D organotypic cultures and inverted invasion assays. This increased invasive potential was also seen in cells lacking β3 integrin but only in 3D cultures containing fibroblasts. Mechanistically, in situ analysis using FRET biosensors revealed that enhanced invasion in cells lacking β1 integrins was directly coupled with reduced activation of focal adhesion kinase (FAK) and the small GTPase RhoA resulting in formation of enhanced dynamic protrusions and increased invasion. These reductions in FAK-RhoA signal activationwere not detected in β3 knockdown cells under the same conditions. This data demonstrates a specific role for β1 integrins in the modulation of a FAK-RhoA-actomyosin signaling axis to regulate cell invasion through complex ECM environments.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Life at the leading edge.

          Cell migration requires sustained forward movement of the plasma membrane at the cell's front or "leading edge." To date, researchers have uncovered four distinct ways of extending the membrane at the leading edge. In lamellipodia and filopodia, actin polymerization directly pushes the plasma membrane forward, whereas in invadopodia, actin polymerization couples with the extracellular delivery of matrix-degrading metalloproteases to clear a path for cells through the extracellular matrix. Membrane blebs drive the plasma membrane forward using a combination of actomyosin-based contractility and reversible detachment of the membrane from the cortical actin cytoskeleton. Each protrusion type requires the coordination of a wide spectrum of signaling molecules and regulators of cytoskeletal dynamics. In addition, these different protrusion methods likely act in concert to move cells through complex environments in vivo. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adhesion signaling - crosstalk between integrins, Src and Rho.

            Interactions between cells and the extracellular matrix coordinate signaling pathways that control various aspects of cellular behavior. Integrins sense the physical properties of the extracellular matrix and organize the cytoskeleton accordingly. In turn, this modulates signaling pathways that are triggered by various other transmembrane receptors and augments the cellular response to growth factors. Over the past years, it has become clear that there is extensive crosstalk between integrins, Src-family kinases and Rho-family GTPases at the heart of such adhesion signaling. In this Commentary, we discuss recent advances in our understanding of the dynamic regulation of the molecular connections between these three protein families. We also discuss how this signaling network can regulate a range of cellular processes that are important for normal tissue function and disease, including cell adhesion, spreading, migration and mechanotransduction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Signal transduction by focal adhesion kinase in cancer.

              Cellular interactions with extracellular matrix play essential roles in tumor initiation, progression and metastasis. Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase identified as a key mediator of signaling by integrins, a major family of cell surface receptors for extracellular matrix, as well as other receptors in both normal and cancer cells. FAK is activated by integrins through disruption of an auto-inhibitory intra-molecular interaction between its kinase domain and the amino terminal FERM domain. The activated FAK forms a binary complex with Src family kinases which can phosphorylate other substrates and trigger multiple intracellular signaling pathways to regulate various cellular functions. Subcellular localization of FAK in focal adhesions is essential for FAK signaling, which is another distinguishing feature of the kinase. Integrin-FAK signaling has been shown to activate a number of signaling pathways through phosphorylation and protein-protein interactions to promote tumorigenesis. FAK also plays a prominent role in tumor progression and metastasis through its regulation of both cancer cells and their microenvironments including cancer cell migration, invasion, epithelial to mesenchymal transition, and angiogenesis. More recently, a role for FAK in tumor initiation and progression has been demonstrated directly using xenograft as well as conditional knockout mouse models. In agreement with these experimental data, overexpression and activation of FAK have been found in a variety of human cancers. A number of small molecule inhibitors for FAK have been developed and in various phases of testing for cancer treatments. Overall, the intensive research on FAK signaling in cancer have yielded a wealth of information on this pivotal kinase and these and future studies are leading to potentially novel therapies for cancer.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                9 September 2013
                : 8
                : 9
                : e74659
                Affiliations
                [1 ]Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
                [2 ]Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland
                [3 ]Centre for Biotechnology, University of Turku, Turku, Finland
                Stony Brook University, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: PC TS JI MP. Performed the experiments: PC TS JI MP. Analyzed the data: PC TS JI MP. Contributed reagents/materials/analysis tools: PC TS JI MP. Wrote the paper: PC MP.

                Article
                PONE-D-13-14764
                10.1371/journal.pone.0074659
                3767638
                24040310
                096e8ee0-6f04-4da0-b1a7-17f88c7f7257
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 9 April 2013
                : 5 August 2013
                Page count
                Pages: 12
                Funding
                The authors would like to thank Nymeth Ali, Sabari Vallath and John Marshall for help with organotypic cultures and the Royal Society, Fundacao para a Ciencia e a Tecnologia (FCT) and Cancer Research UK (#A9503) for funding. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article