28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          SARS-CoV was the cause of the global pandemic in 2003 that infected over 8000 people in 8 months. Vaccines against SARS are still not available. We developed a novel method to produce high levels of a recombinant SARS virus-like particles (VLPs) vaccine containing the SARS spike (S) protein and the influenza M1 protein using the baculovirus insect cell expression system. These chimeric SARS VLPs have a similar size and morphology to the wild type SARS-CoV. We tested the immunogenicity and protective efficacy of purified chimeric SARS VLPs and full length SARS S protein vaccines in a mouse lethal challenge model. The SARS VLP vaccine, containing 0.8 μg of SARS S protein, completely protected mice from death when administered intramuscular (IM) or intranasal (IN) routes in the absence of an adjuvant. Likewise, the SARS VLP vaccine, containing 4 μg of S protein without adjuvant, reduced lung virus titer to below detectable level, protected mice from weight loss, and elicited a high level of neutralizing antibodies against SARS-CoV. Sf9 cell-produced full length purified SARS S protein was also an effective vaccine against SARS-CoV but only when co-administered IM with aluminum hydroxide. SARS-CoV VLPs are highly immunogenic and induce neutralizing antibodies and provide protection against lethal challenge. Sf9 cell-based VLP vaccines are a potential tool to provide protection against novel pandemic agents.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome

          The severe acute respiratory syndrome (SARS) has recently been identified as a new clinical entity. SARS is thought to be caused by an unknown infectious agent. Clinical specimens from patients with SARS were searched for unknown viruses with the use of cell cultures and molecular techniques. A novel coronavirus was identified in patients with SARS. The virus was isolated in cell culture, and a sequence 300 nucleotides in length was obtained by a polymerase-chain-reaction (PCR)-based random-amplification procedure. Genetic characterization indicated that the virus is only distantly related to known coronaviruses (identical in 50 to 60 percent of the nucleotide sequence). On the basis of the obtained sequence, conventional and real-time PCR assays for specific and sensitive detection of the novel virus were established. Virus was detected in a variety of clinical specimens from patients with SARS but not in controls. High concentrations of viral RNA of up to 100 million molecules per milliliter were found in sputum. Viral RNA was also detected at extremely low concentrations in plasma during the acute phase and in feces during the late convalescent phase. Infected patients showed seroconversion on the Vero cells in which the virus was isolated. The novel coronavirus might have a role in causing SARS. Copyright 2003 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China.

            Y Guan (2003)
            A novel coronavirus (SCoV) is the etiological agent of severe acute respiratory syndrome (SARS). SCoV-like viruses were isolated from Himalayan palm civets found in a live-animal market in Guangdong, China. Evidence of virus infection was also detected in other animals (including a raccoon dog, Nyctereutes procyonoides) and in humans working at the same market. All the animal isolates retain a 29-nucleotide sequence that is not found in most human isolates. The detection of SCoV-like viruses in small, live wild mammals in a retail market indicates a route of interspecies transmission, although the natural reservoir is not known.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Virus-like particles: Passport to immune recognition

              Virus-like particles (VLPs) are formed by the self-assembly of envelope and/or capsid proteins from many viruses. In many cases such VLPs have structural characteristics and antigenicity similar to the parental virus, and some have already proven successful as vaccines against the cognate virus infection. The structural components of some VLPs have also proven amenable to the insertion or fusion of foreign antigenic sequences, allowing the production of chimeric VLPs exposing the foreign antigen on their surface. Other VLPs have been used as carriers for foreign antigens, including non-protein antigens, via chemical conjugation. This review outlines some of the advantages, disadvantages, and technical considerations for the use of a wide range of VLP systems in vaccine development.
                Bookmark

                Author and article information

                Contributors
                Journal
                Vaccine
                Vaccine
                Vaccine
                Elsevier Ltd.
                0264-410X
                1873-2518
                14 July 2011
                2 September 2011
                14 July 2011
                : 29
                : 38
                : 6606-6613
                Affiliations
                [a ]Novavax Inc., 9920 Belward Campus Drive, Rockville, MD 20850, United States
                [b ]Institute for Antiviral Research, Utah State University, Logan, UT 84322, United States
                Author notes
                [* ]Corresponding author. Tel.: +1 240 268 2069; fax: +1 240 268 2100. yliu@ 123456novavax.com
                Article
                S0264-410X(11)01005-X
                10.1016/j.vaccine.2011.06.111
                3165014
                21762752
                09762680-bff5-4171-b553-1b903be3114a
                Copyright © 2011 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 16 February 2011
                : 22 March 2011
                : 29 June 2011
                Categories
                Article

                Infectious disease & Microbiology
                severe acute respiratory syndrome,virus like particles,lung virus titer,neutralizing antibody,baculovirus,influenza

                Comments

                Comment on this article