125
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Novel function of keratins 5 and 14 in proliferation and differentiation of stratified epithelial cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Keratin expression in stratified epithelia is tightly regulated during squamous cell differentiation. Keratins 5 and 14 are expressed in mitotically active basal layer cells, but their function is not well defined. Reported here is the possible role of K14 in regulation of cell proliferation/differentiation in stratified epithelial cells.

          Abstract

          Keratins are cytoplasmic intermediate filament proteins preferentially expressed by epithelial tissues in a site-specific and differentiation-dependent manner. The complex network of keratin filaments in stratified epithelia is tightly regulated during squamous cell differentiation. Keratin 14 (K14) is expressed in mitotically active basal layer cells, along with its partner keratin 5 (K5), and their expression is down-regulated as cells differentiate. Apart from the cytoprotective functions of K14, very little is known about K14 regulatory functions, since the K14 knockout mice show postnatal lethality. In this study, K14 expression was inhibited using RNA interference in cell lines derived from stratified epithelia to study the K14 functions in epithelial homeostasis. The K14 knockdown clones demonstrated substantial decreases in the levels of the K14 partner K5. These cells showed reduction in cell proliferation and delay in cell cycle progression, along with decreased phosphorylated Akt levels. K14 knockdown cells also exhibited enhanced levels of activated Notch1, involucrin, and K1. In addition, K14 knockdown AW13516 cells showed significant reduction in tumorigenicity. Our results suggest that K5 and K14 may have a role in maintenance of cell proliferation potential in the basal layer of stratified epithelia, modulating phosphatidylinositol 3-kinase/Akt–mediated cell proliferation and/or Notch1-dependent cell differentiation.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: not found
          • Article: not found

          The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation.

            The role of Notch signaling in growth/differentiation control of mammalian epithelial cells is still poorly defined. We show that keratinocyte-specific deletion of the Notch1 gene results in marked epidermal hyperplasia and deregulated expression of multiple differentiation markers. In differentiating primary keratinocytes in vitro endogenous Notch1 is required for induction of p21WAF1/Cip1 expression, and activated Notch1 causes growth suppression by inducing p21WAF1/Cip1 expression. Activated Notch1 also induces expression of 'early' differentiation markers, while suppressing the late markers. Induction of p21WAF1/Cip1 expression and early differentiation markers occur through two different mechanisms. The RBP-Jkappa protein binds directly to the endogenous p21 promoter and p21 expression is induced specifically by activated Notch1 through RBP-Jkappa-dependent transcription. Expression of early differentiation markers is RBP-Jkappa-independent and can be induced by both activated Notch1 and Notch2, as well as the highly conserved ankyrin repeat domain of the Notch1 cytoplasmic region. Thus, Notch signaling triggers two distinct pathways leading to keratinocyte growth arrest and differentiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New consensus nomenclature for mammalian keratins

              Keratins are intermediate filament–forming proteins that provide mechanical support and fulfill a variety of additional functions in epithelial cells. In 1982, a nomenclature was devised to name the keratin proteins that were known at that point. The systematic sequencing of the human genome in recent years uncovered the existence of several novel keratin genes and their encoded proteins. Their naming could not be adequately handled in the context of the original system. We propose a new consensus nomenclature for keratin genes and proteins that relies upon and extends the 1982 system and adheres to the guidelines issued by the Human and Mouse Genome Nomenclature Committees. This revised nomenclature accommodates functional genes and pseudogenes, and although designed specifically for the full complement of human keratins, it offers the flexibility needed to incorporate additional keratins from other mammalian species.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                Mol. Biol. Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                01 November 2011
                : 22
                : 21
                : 4068-4078
                Affiliations
                Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
                Northwestern University
                Author notes
                *Address correspondence to: Milind M. Vaidya ( mvaidya@ 123456actrec.gov.in ).
                Article
                E10-08-0703
                10.1091/mbc.E10-08-0703
                3204069
                21900500
                097b7708-972b-481e-9c20-15c9e8234140
                © 2011 Alam et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology.

                History
                : 17 August 2010
                : 22 August 2011
                : 01 September 2011
                Categories
                Articles
                Cytoskeleton

                Molecular biology
                Molecular biology

                Comments

                Comment on this article