16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of the Frost-Induced Damage of Building Enclosures on the Territory of the Czech Republic

      1 , 1 , 1 , 1
      Advances in Materials Science and Engineering
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A comprehensive analysis of environmental loads across the Czech Republic in terms of frost-induced damage is presented. Computational simulation of hygrothermal performance of eleven characteristic types of building envelopes, composed of both contemporary and historical materials, is performed at first. The exterior boundary conditions of the computational model are defined by a set of weather data characterizing the environmental conditions in the Czech Republic, which are acquired from 64 weather stations. The results of hygrothermal simulations are assessed using several specific damage functions. In this way, the basic datasets for the frost damage analysis are obtained. Their application as input parameters of a specially developed correction procedure based on elevation makes them possible to obtain a continuous coverage of the geographic area of the Czech Republic. Finally, isopleths of the supposed frost damage are drawn, depending on the envelope type, and damage maps are produced which may help the engineers to enhance the building envelope design process. The presented results indicate the necessity of paying attention to local environmental loads in the building enclosure design process and reveal both critical and favorable locations from the point of view of frost-induced damage to buildings.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Melting and freezing of water in cylindrical silica nanopores.

          Freezing and melting of H(2)O and D(2)O in the cylindrical pores of well-characterized MCM-41 silica materials (pore diameters from 2.5 to 4.4 nm) was studied by differential scanning calorimetry (DSC) and (1)H NMR cryoporometry. Well-resolved DSC melting and freezing peaks were obtained for pore diameters down to 3.0 nm, but not in 2.5 nm pores. The pore size dependence of the melting point depression DeltaT(m) can be represented by the Gibbs-Thomson equation when the existence of a layer of nonfreezing water at the pore walls is taken into account. The DSC measurements also show that the hysteresis connected with the phase transition, and the melting enthalpy of water in the pores, both vanish near a pore diameter D* approximately equal to 2.8 nm. It is concluded that D* represents a lower limit for first-order melting/freezing in the pores. The NMR spin echo measurements show that a transition from low to high mobility of water molecules takes place in all MCM-41 materials, including the one with 2.5 nm pores, but the transition revealed by NMR occurs at a higher temperature than indicated by the DSC melting peaks. The disagreement between the NMR and DSC transition temperatures becomes more pronounced as the pore size decreases. This is attributed to the fact that with decreasing pore size an increasing fraction of the water molecules is situated in the first and second molecular layers next to the pore wall, and these molecules have slower dynamics than the molecules in the core of the pore.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Effect of moisture content on heat and moisture transport and storage properties of thermal insulation materials

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              High performance concrete with Czech metakaolin: Experimental analysis of strength, toughness and durability characteristics

                Bookmark

                Author and article information

                Journal
                Advances in Materials Science and Engineering
                Advances in Materials Science and Engineering
                Hindawi Limited
                1687-8434
                1687-8442
                September 30 2018
                September 30 2018
                : 2018
                : 1-11
                Affiliations
                [1 ]Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague 6, Czech Republic
                Article
                10.1155/2018/3421801
                097e9504-df99-4662-9c37-c10383da2bf7
                © 2018

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article