9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of twin orientation and spacing on the mechanical properties of Cu nanowires

      research-article
      1 , , 1 , 2 , 1
      Scientific Reports
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The role of twin orientation in mechanical behaviors of nanomaterials is drawing increasing attention. In this paper, atomistic simulations on the tensile deformation of twinned Cu nanowires (NWs) are implemented to investigate the twin orientation and spacing effects. The results of numerical simulations reveal that the tensile deformation mechanisms can be divided into three types with the twin orientation varying from 0° to 90°: dislocations slip intersecting with twin boundary (TB), stacking faults formed parallel to the TB and TB migration. Detail analysis about dislocation motion is carried out to illustrate the plastic deformation mechanisms. In addition, with the increasing of the TB spacing, there is a transition from yield with strain hardening to yield with nearly constant flow stress. The peak stress decreases with the increase of TB spacing, which can be attributed to surface roughness caused by crystal reorientation. Our findings also suggest a possible approach to tune the mechanical behaviors of low dimensional nanostructures.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          Molecular dynamics study of melting and freezing of small Lennard-Jones clusters

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ultrahigh strength and high electrical conductivity in copper.

            Methods used to strengthen metals generally also cause a pronounced decrease in electrical conductivity, so that a tradeoff must be made between conductivity and mechanical strength. We synthesized pure copper samples with a high density of nanoscale growth twins. They showed a tensile strength about 10 times higher than that of conventional coarse-grained copper, while retaining an electrical conductivity comparable to that of pure copper. The ultrahigh strength originates from the effective blockage of dislocation motion by numerous coherent twin boundaries that possess an extremely low electrical resistivity, which is not the case for other types of grain boundaries.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Revealing the maximum strength in nanotwinned copper.

              The strength of polycrystalline materials increases with decreasing grain size. Below a critical size, smaller grains might lead to softening, as suggested by atomistic simulations. The strongest size should arise at a transition in deformation mechanism from lattice dislocation activities to grain boundary-related processes. We investigated the maximum strength of nanotwinned copper samples with different twin thicknesses. We found that the strength increases with decreasing twin thickness, reaching a maximum at 15 nanometers, followed by a softening at smaller values that is accompanied by enhanced strain hardening and tensile ductility. The strongest twin thickness originates from a transition in the yielding mechanism from the slip transfer across twin boundaries to the activity of preexisting easy dislocation sources.
                Bookmark

                Author and article information

                Contributors
                zyyang@buaa.edu.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                30 August 2017
                30 August 2017
                2017
                : 7
                : 10056
                Affiliations
                [1 ]ISNI 0000 0000 9999 1211, GRID grid.64939.31, Institute of Solid Mechanics, School of Aeronautic Science and Engineering, , Beihang University (BUAA), ; Beijing, 100083 P.R. China
                [2 ]ISNI 0000 0000 9999 1211, GRID grid.64939.31, School of Chemistry, , Beihang University (BUAA), ; Beijing, 100083 P.R. China
                Author information
                http://orcid.org/0000-0003-3163-7998
                Article
                10934
                10.1038/s41598-017-10934-6
                5577259
                29273747
                097f7f5f-92cb-4116-85bf-f5868fe4eb6d
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 7 June 2017
                : 16 August 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article