13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nitric oxide regulates matrix metalloproteinase-9 activity by guanylyl-cyclase-dependent and -independent pathways.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Matrix metalloproteinases (MMPs) are of central importance in the proteolytic remodeling of matrix and the generation of biologically active molecules. MMPs are distinguished by a conserved catalytic domain containing a zinc ion, as well as a prodomain that regulates enzyme activation by modulation of a cysteine residue within that domain. Because nitric oxide (NO) and derived reactive nitrogen species target zinc ions and cysteine thiols, we assessed the ability of NO to regulate MMPs. A dose-dependent, biphasic regulatory effect of NO on the activity of MMPs (MMP-9, -1, and -13) secreted from murine macrophages was observed. Low exogenous NO perturbed MMP/tissue inhibitor of metalloproteinase (TIMP)-1 levels by enhancing MMP activity and suppressing the endogenous inhibitor TIMP-1. This was cGMP-dependent, as confirmed by the cGMP analog 8-bromo-cGMP, as well as by the NO-soluble guanylyl cyclase-cGMP signaling inhibitor thrombospondin-1. Exposure of purified latent MMP-9 to exogenous NO demonstrated a concentration-dependent activation and inactivation of the enzyme, which occurred at higher NO flux. These chemical reactions occurred at concentrations similar to that of activated macrophages. Importantly, these results suggest that NO regulation of MMP-9 secreted from macrophages may occur chemically by reactive nitrogen species-mediated protein modification, biologically through soluble guanylyl-cyclase-dependent modulation of the MMP-9/TIMP-1 balance, or proteolytically through regulation of MMP-1 and -13, which can cleave the prodomain of MMP-9. Furthermore, when applied in a wound model, conditioned media exhibiting peak MMP activity increased vascular cell migration that was MMP-9-dependent, suggesting that MMP-9 is a key physiologic mediator of the effects of NO in this model.

          Related collections

          Author and article information

          Journal
          Proc Natl Acad Sci U S A
          Proceedings of the National Academy of Sciences of the United States of America
          Proceedings of the National Academy of Sciences
          0027-8424
          0027-8424
          Oct 23 2007
          : 104
          : 43
          Affiliations
          [1 ] Radiation Biology Branch and Laboratory of Pathology, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA. ridnourl@mail.nih.gov
          Article
          0702761104
          10.1073/pnas.0702761104
          2040425
          17942699
          09803ecb-c4e9-43fe-be51-da96e3131610
          History

          Comments

          Comment on this article