9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Field rates of Sivanto (flupyradifurone) and Transform ® (sulfoxaflor) increase oxidative stress and induce apoptosis in honey bees ( Apis mellifera L.)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pesticide exposures can have detrimental impacts on bee pollinators, ranging from immediate mortality to sub-lethal impacts. Flupyradifurone is the active ingredient in Sivanto and sulfoxaflor is the active ingredient in Transform ®. They are both relatively new insecticides developed with an intent to reduce negative effects on bees, when applied to bee-attractive crops. With the growing concern regarding pollinator health and pollinator declines, it is important to have a better understanding of any potential negative impacts, especially sub-lethal, of these pesticides on bees. This study reports novel findings regarding physiological stress experienced by bees exposed to field application rates of these two insecticides via a Potter Tower sprayer. Two contact exposure experiments were conducted—a shorter 6-hour study and a longer 10-day study. Honey bee mortality, sugar syrup and water consumption, and physiological responses (oxidative stress and apoptotic protein assays) were assessed in bees exposed to Sivanto and Transform ®, and compared to bees in control group. For the longer, 10-day contact exposure experiment, only the Sivanto group was compared to the control group, as high mortality recorded in the sulfoxaflor treatment group during the shorter contact exposure experiment, made the latter group unfeasible to test in the longer 10-days experiment. In both the studies, sugar syrup and water consumptions were significantly different between treatment groups and controls. The highest mortality was observed in Transform ® exposed bees, followed by the Sivanto exposed bees. Estimates of reactive oxygen/nitrogen species indicated significantly elevated oxidative stress in both pesticide treatment groups, when compared to controls. Caspase-3 protein assays, an indicator of onset of apoptosis, was also significantly higher in the pesticide treatment groups. These differences were largely driven by post exposure duration, indicating sub-lethal impacts. Further, our findings also emphasize the need to revisit contact exposure impacts of Sivanto , given the sub-lethal impacts and mortality observed in our long-term (10-day) contact exposure experiment.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Activation of apoptosis signalling pathways by reactive oxygen species.

          Reactive oxygen species (ROS) are short-lived and highly reactive molecules. The generation of ROS in cells exists in equilibrium with a variety of antioxidant defences. At low to modest doses, ROS are considered to be essential for regulation of normal physiological functions involved in development such as cell cycle progression and proliferation, differentiation, migration and cell death. ROS also play an important role in the immune system, maintenance of the redox balance and have been implicated in activation of various cellular signalling pathways. Excess cellular levels of ROS cause damage to proteins, nucleic acids, lipids, membranes and organelles, which can lead to activation of cell death processes such as apoptosis. Apoptosis is a highly regulated process that is essential for the development and survival of multicellular organisms. These organisms often need to discard cells that are superfluous or potentially harmful, having accumulated mutations or become infected by pathogens. Apoptosis features a characteristic set of morphological and biochemical features whereby cells undergo a cascade of self-destruction. Thus, proper regulation of apoptosis is essential for maintaining normal cellular homeostasis. ROS play a central role in cell signalling as well as in regulation of the main pathways of apoptosis mediated by mitochondria, death receptors and the endoplasmic reticulum (ER). This review focuses on current understanding of the role of ROS in each of these three main pathways of apoptosis. The role of ROS in the complex interplay and crosstalk between these different signalling pathways remains to be further unravelled during the coming years.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Emerging roles of caspase-3 in apoptosis.

            Caspases are crucial mediators of programmed cell death (apoptosis). Among them, caspase-3 is a frequently activated death protease, catalyzing the specific cleavage of many key cellular proteins. However, the specific requirements of this (or any other) caspase in apoptosis have remained largely unknown until now. Pathways to caspase-3 activation have been identified that are either dependent on or independent of mitochondrial cytochrome c release and caspase-9 function. Caspase-3 is essential for normal brain development and is important or essential in other apoptotic scenarios in a remarkable tissue-, cell type- or death stimulus-specific manner. Caspase-3 is also required for some typical hallmarks of apoptosis, and is indispensable for apoptotic chromatin condensation and DNA fragmentation in all cell types examined. Thus, caspase-3 is essential for certain processes associated with the dismantling of the cell and the formation of apoptotic bodies, but it may also function before or at the stage when commitment to loss of cell viability is made.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Caspase functions in cell death and disease.

              Caspases are a family of endoproteases that provide critical links in cell regulatory networks controlling inflammation and cell death. The activation of these enzymes is tightly controlled by their production as inactive zymogens that gain catalytic activity following signaling events promoting their aggregation into dimers or macromolecular complexes. Activation of apoptotic caspases results in inactivation or activation of substrates, and the generation of a cascade of signaling events permitting the controlled demolition of cellular components. Activation of inflammatory caspases results in the production of active proinflammatory cytokines and the promotion of innate immune responses to various internal and external insults. Dysregulation of caspases underlies human diseases including cancer and inflammatory disorders, and major efforts to design better therapies for these diseases seek to understand how these enzymes work and how they can be controlled.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SoftwareRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Writing – review & editing
                Role: Writing – review & editing
                Role: VisualizationRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SoftwareRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                21 May 2020
                2020
                : 15
                : 5
                : e0233033
                Affiliations
                [001]Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
                University of North Carolina at Greensboro, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0003-0489-8586
                Article
                PONE-D-19-35832
                10.1371/journal.pone.0233033
                7241780
                32437365
                09873891-ca07-4012-abcf-6fc1e96859aa
                © 2020 Chakrabarti et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 December 2019
                : 27 April 2020
                Page count
                Figures: 4, Tables: 0, Pages: 15
                Funding
                Funded by: Oregon State Beekeepers Association
                Award Recipient :
                Funding assistance from Oregon State Beekeepers Association and GloryBee to RRS supported the study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Arthropoda
                Insects
                Hymenoptera
                Bees
                Honey Bees
                Biology and Life Sciences
                Agriculture
                Agrochemicals
                Pesticides
                Biology and Life Sciences
                Agriculture
                Pest Control
                Pesticides
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Arthropoda
                Insects
                Hymenoptera
                Bees
                Biology and Life Sciences
                Cell Biology
                Oxidative Stress
                Biology and Life Sciences
                Cell Biology
                Cell Processes
                Cell Death
                Apoptosis
                Biology and Life Sciences
                Agriculture
                Pest Control
                Biology and Life Sciences
                Zoology
                Entomology
                Insect Physiology
                Biology and Life Sciences
                Zoology
                Animal Physiology
                Invertebrate Physiology
                Insect Physiology
                Biology and Life Sciences
                Agriculture
                Agrochemicals
                Insecticides
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article