0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The medial prefrontal cortex - hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: Behavioral, anatomical and neurochemical properties

      , , ,

      Neuroscience & Biobehavioral Reviews

      Elsevier BV

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rats and mice have been demonstrated to show episodic-like memory, a prototype of episodic memory, as defined by an integrated memory of the experience of an object or event, in a particular place and time. Such memory can be assessed via the use of spontaneous object exploration paradigms, variably designed to measure memory for object, place, temporal order and object-location inter-relationships. We review the methodological properties of these tests, the neurobiology about time and discuss the evidence for the involvement of the medial prefrontal cortex (mPFC), entorhinal cortex (EC) and hippocampus, with respect to their anatomy, neurotransmitter systems and functional circuits. The systematic analysis suggests that a specific circuit between the mPFC, lateral EC and hippocampus encodes the information for event, place and time of occurrence into the complex episodic-like memory, as a top-down regulation from the mPFC onto the hippocampus. This circuit can be distinguished from the neuronal component memory systems for processing the individual information of object, time and place.

          Related collections

          Most cited references 445

          • Record: found
          • Abstract: found
          • Article: not found

          Microstructure of a spatial map in the entorhinal cortex.

          The ability to find one's way depends on neural algorithms that integrate information about place, distance and direction, but the implementation of these operations in cortical microcircuits is poorly understood. Here we show that the dorsocaudal medial entorhinal cortex (dMEC) contains a directionally oriented, topographically organized neural map of the spatial environment. Its key unit is the 'grid cell', which is activated whenever the animal's position coincides with any vertex of a regular grid of equilateral triangles spanning the surface of the environment. Grids of neighbouring cells share a common orientation and spacing, but their vertex locations (their phases) differ. The spacing and size of individual fields increase from dorsal to ventral dMEC. The map is anchored to external landmarks, but persists in their absence, suggesting that grid cells may be part of a generalized, path-integration-based map of the spatial environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Episodic memory: from mind to brain.

             Endel Tulving (2002)
            Episodic memory is a neurocognitive (brain/mind) system, uniquely different from other memory systems, that enables human beings to remember past experiences. The notion of episodic memory was first proposed some 30 years ago. At that time it was defined in terms of materials and tasks. It was subsequently refined and elaborated in terms of ideas such as self, subjective time, and autonoetic consciousness. This chapter provides a brief history of the concept of episodic memory, describes how it has changed (indeed greatly changed) since its inception, considers criticisms of it, and then discusses supporting evidence provided by (a) neuropsychological studies of patterns of memory impairment caused by brain damage, and (b) functional neuroimaging studies of patterns of brain activity of normal subjects engaged in various memory tasks. I also suggest that episodic memory is a true, even if as yet generally unappreciated, marvel of nature.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              What makes us tick? Functional and neural mechanisms of interval timing.

              Time is a fundamental dimension of life. It is crucial for decisions about quantity, speed of movement and rate of return, as well as for motor control in walking, speech, playing or appreciating music, and participating in sports. Traditionally, the way in which time is perceived, represented and estimated has been explained using a pacemaker-accumulator model that is not only straightforward, but also surprisingly powerful in explaining behavioural and biological data. However, recent advances have challenged this traditional view. It is now proposed that the brain represents time in a distributed manner and tells the time by detecting the coincidental activation of different neural populations.
                Bookmark

                Author and article information

                Journal
                Neuroscience & Biobehavioral Reviews
                Neuroscience & Biobehavioral Reviews
                Elsevier BV
                01497634
                June 2020
                June 2020
                : 113
                : 373-407
                Article
                10.1016/j.neubiorev.2020.04.007
                7302494
                32298711
                © 2020

                Comments

                Comment on this article