25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clostridial conversion of corn syrup to Acetone-Butanol-Ethanol (ABE) via batch and fed-batch fermentation

      research-article
      a , a , b ,
      Heliyon
      Elsevier
      Bioengineering, Chemical engineering

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Corn syrup - a commercial product derived from saccharification of corn starch - was used to produce acetone-butanol-ethanol (ABE) by Clostridium spp. Screening of commercial Clostridium spp., substrate inhibition tests and fed-batch experiments were carried out to improve ABE production using corn syrup as only carbon source. The screening tests carried out in batch mode using a production media containing 50 g/L corn syrup revealed that C. saccharobutylicum was the best performer in terms of total solvent concentration (12.46 g/L), yield (0.30 g/g) and productivity (0.19 g/L/h) and it was selected for successive experiments. Concentration of corn syrup higher than 50 g/L resulted in no solvents production. Fed-batch fermentation improved ABE production with respect to batch fermentation: the butanol and solvent concentration increased up to 8.70 and 16.68 g/L, respectively. The study demonstrated the feasibility of producing solvents via ABE fermentation using corn syrup as a model substrate of concentrated sugar mixtures.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8

          Background Lignin materials are abundant and among the most important potential sources for biofuel production. Development of an efficient lignin degradation process has considerable potential for the production of a variety of chemicals, including bioethanol. However, lignin degradation using current methods is inefficient. Given their immense environmental adaptability and biochemical versatility, bacterial could be used as a valuable tool for the rapid degradation of lignin. Kraft lignin (KL) is a polymer by-product of the pulp and paper industry resulting from alkaline sulfide treatment of lignocellulose, and it has been widely used for lignin-related studies. Results Beta-proteobacterium Cupriavidus basilensis B-8 isolated from erosive bamboo slips displayed substantial KL degradation capability. With initial concentrations of 0.5–6 g L-1, at least 31.3% KL could be degraded in 7 days. The maximum degradation rate was 44.4% at the initial concentration of 2 g L-1. The optimum pH and temperature for KL degradation were 7.0 and 30°C, respectively. Manganese peroxidase (MnP) and laccase (Lac) demonstrated their greatest level of activity, 1685.3 U L-1 and 815.6 U L-1, at the third and fourth days, respectively. Many small molecule intermediates were formed during the process of KL degradation, as determined using GC-MS analysis. In order to perform metabolic reconstruction of lignin degradation in this bacterium, a draft genome sequence for C. basilensis B-8 was generated. Genomic analysis focused on the catabolic potential of this bacterium against several lignin-derived compounds. These analyses together with sequence comparisons predicted the existence of three major metabolic pathways: β-ketoadipate, phenol degradation, and gentisate pathways. Conclusion These results confirmed the capability of C. basilensis B-8 to promote KL degradation. Whole genomic sequencing and systematic analysis of the C. basilensis B-8 genome identified degradation steps and intermediates from this bacterial-mediated KL degradation method. Our findings provide a theoretical basis for research into the mechanisms of lignin degradation as well as a practical basis for biofuel production using lignin materials.
            • Record: found
            • Abstract: found
            • Article: not found

            Fermentative butanol production by Clostridia.

            Butanol is an aliphatic saturated alcohol having the molecular formula of C(4)H(9)OH. Butanol can be used as an intermediate in chemical synthesis and as a solvent for a wide variety of chemical and textile industry applications. Moreover, butanol has been considered as a potential fuel or fuel additive. Biological production of butanol (with acetone and ethanol) was one of the largest industrial fermentation processes early in the 20th century. However, fermentative production of butanol had lost its competitiveness by 1960s due to increasing substrate costs and the advent of more efficient petrochemical processes. Recently, increasing demand for the use of renewable resources as feedstock for the production of chemicals combined with advances in biotechnology through omics, systems biology, metabolic engineering and innovative process developments is generating a renewed interest in fermentative butanol production. This article reviews biotechnological production of butanol by clostridia and some relevant fermentation and downstream processes. The strategies for strain improvement by metabolic engineering and further requirements to make fermentative butanol production a successful industrial process are also discussed.
              • Record: found
              • Abstract: not found
              • Article: not found

              Progress in the production and application of n-butanol as a biofuel

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                22 March 2019
                March 2019
                22 March 2019
                : 5
                : 3
                : e01401
                Affiliations
                [a ]Dipartimento di Ingegneria Chimica, Dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Napoli, Italy
                [b ]Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Street, London, ON, Canada
                Author notes
                []Corresponding author. lrehmann@ 123456uwo.ca
                Article
                S2405-8440(18)37576-5 e01401
                10.1016/j.heliyon.2019.e01401
                6434287
                30963127
                098ac9ad-f499-4080-958d-653d658ec5f4
                © 2019 Published by Elsevier Ltd.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 11 November 2018
                : 17 March 2019
                : 18 March 2019
                Categories
                Article

                bioengineering,chemical engineering
                bioengineering, chemical engineering

                Comments

                Comment on this article

                Related Documents Log