9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of Salt-Stress-Induced Genes from the RNA-Seq Data of Reaumuria trigyna Using Differential-Display Reverse Transcription PCR

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Next generation sequencing (NGS) technologies have been used to generate huge amounts of sequencing data from many organisms. However, the correct choice of candidate genes and prevention of false-positive results computed from digital gene expression (DGE) of RNA-seq data are vital when using these genetic resources. We indirectly identified 18 salt-stress-induced Reaumuria trigyna transcripts from the transcriptome sequencing data using differential-display reverse transcription PCR (DDRT-PCR) combined with local BLAST searches. Highly consistent with the DGE results, the quantitative real-time PCR expression patterns of these transcripts showed strong upregulation by salt stress, suggesting that these genes may play important roles in R. trigyna's survival under high-salt environments. The method presented here successfully identified responsive genes from the massive amount of RNA-seq data. Thus, we suggest that DDRT-PCR could be employed to mine NGS data in a wide range of applications in transcriptomic studies. In addition, the genes identified in the present study are promising candidates for further elucidation of the salt tolerance mechanisms in R. trigyna.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Applications of next generation sequencing in molecular ecology of non-model organisms.

          As most biologists are probably aware, technological advances in molecular biology during the last few years have opened up possibilities to rapidly generate large-scale sequencing data from non-model organisms at a reasonable cost. In an era when virtually any study organism can 'go genomic', it is worthwhile to review how this may impact molecular ecology. The first studies to put the next generation sequencing (NGS) to the test in ecologically well-characterized species without previous genome information were published in 2007 and the beginning of 2008. Since then several studies have followed in their footsteps, and a large number are undoubtedly under way. This review focuses on how NGS has been, and can be, applied to ecological, population genetic and conservation genetic studies of non-model species, in which there is no (or very limited) genomic resources. Our aim is to draw attention to the various possibilities that are opening up using the new technologies, but we also highlight some of the pitfalls and drawbacks with these methods. We will try to provide a snapshot of the current state of the art for this rapidly advancing and expanding field of research and give some likely directions for future developments.
            • Record: found
            • Abstract: found
            • Article: not found

            The continuing conundrum of the LEA proteins.

            Research into late embryogenesis abundant (LEA) proteins has been ongoing for more than 20 years but, although there is a strong association of LEA proteins with abiotic stress tolerance particularly dehydration and cold stress, for most of that time, their function has been entirely obscure. After their initial discovery in plant seeds, three major groups (numbered 1, 2 and 3) of LEA proteins have been described in a range of different plants and plant tissues. Homologues of groups 1 and 3 proteins have also been found in bacteria and in certain invertebrates. In this review, we present some new data, survey the biochemistry, biophysics and bioinformatics of the LEA proteins and highlight several possible functions. These include roles as antioxidants and as membrane and protein stabilisers during water stress, either by direct interaction or by acting as molecular shields. Along with other hydrophilic proteins and compatible solutes, LEA proteins might also serve as "space fillers" to prevent cellular collapse at low water activities. This multifunctional capacity of the LEA proteins is probably attributable in part to their structural plasticity, as they are largely lacking in secondary structure in the fully hydrated state, but can become more folded during water stress and/or through association with membrane surfaces. The challenge now facing researchers investigating these enigmatic proteins is to make sense of the various in vitro defined functions in the living cell: Are the LEA proteins truly multi-talented, or are they still just misunderstood?
              • Record: found
              • Abstract: found
              • Article: not found

              Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction

              Effective methods are needed to identify and isolate those genes that are differentially expressed in various cells or under altered conditions. This report describes a method to separate and clone individual messenger RNAs (mRNAs) by means of the polymerase chain reaction. The key element is to use a set of oligonucleotide primers, one being anchored to the polyadenylate tail of a subset of mRNAs, the other being short and arbitrary in sequence so that it anneals at different positions relative to the first primer. The mRNA subpopulations defined by these primer pairs were amplified after reverse transcription and resolved on a DNA sequencing gel. When multiple primer sets were used, reproducible patterns of amplified complementary DNA fragments were obtained that showed strong dependence on sequence specificity of either primer.

                Author and article information

                Journal
                Int J Genomics
                Int J Genomics
                IJG
                International Journal of Genomics
                Hindawi Publishing Corporation
                2314-436X
                2314-4378
                2014
                26 November 2014
                : 2014
                : 381501
                Affiliations
                1Key Laboratory of Herbage & Endemic Crop Biotechnology and College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
                2School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
                Author notes
                *Ying-chun Wang: ycwang@ 123456imu.edu.cn

                Academic Editor: Qu Zhang

                Article
                10.1155/2014/381501
                4322826
                099d32c6-221c-4dfa-8c51-f7e2eb41ff8d
                Copyright © 2014 Zhen-hua Dang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 August 2014
                : 27 October 2014
                : 10 November 2014
                Categories
                Research Article

                Comments

                Comment on this article

                Related Documents Log