12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional Testing of Vestibulo-Spinal Contributions to Balance Control: Insights From Tracking Improvement Following Acute Bilateral Peripheral Vestibular Loss

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: A battery of stance and gait tasks can be used to quantify functional deficits and track improvement in balance control following peripheral vestibular loss. An improvement could be due to at least 3 processes: partial peripheral recovery of sensory responses eliciting canal or otolith driven vestibular reflexes; central compensation of vestibular reflex gains, including substitution of intact otolith responses for pathological canal responses; or sensory substitution of visual and proprioceptive inputs for vestibular contributions to balance control.

          Results: We describe the presumed action of all 3 processes observed for a case of sudden incapacitating acute bilateral peripheral loss probably due to vestibular neuritis. Otolith responses were largely unaffected. However, pathological decreases in all canal-driven vestibular ocular reflex (VOR) gains were observed. After 3 months of vestibular rehabilitation, balance control was normal but VOR gains remained low.

          Conclusions: This case illustrates the difficulty in predicting balance control improvements from tests of the 10 vestibular end organs and emphasizes the need to test balance control function directly in order to determine if balance control has improved and is normal again despite remaining vestibular sensory deficits. This case also illustrates that the presence of residual otolithic function may be crucial for balance control improvement in cases of bilateral vestibular hypofunction.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          The video head impulse test: diagnostic accuracy in peripheral vestibulopathy.

          The head impulse test (HIT) is a useful bedside test to identify peripheral vestibular deficits. However, such a deficit of the vestibulo-ocular reflex (VOR) may not be diagnosed because corrective saccades cannot always be detected by simple observation. The scleral search coil technique is the gold standard for HIT measurements, but it is not practical for routine testing or for acute patients, because they are required to wear an uncomfortable contact lens. To develop an easy-to-use video HIT system (vHIT) as a clinical tool for identifying peripheral vestibular deficits. To validate the diagnostic accuracy of vHIT by simultaneous measures with video and search coil recordings across healthy subjects and patients with a wide range of previously identified peripheral vestibular deficits. Horizontal HIT was recorded simultaneously with vHIT (250 Hz) and search coils (1,000 Hz) in 8 normal subjects, 6 patients with vestibular neuritis, 1 patient after unilateral intratympanic gentamicin, and 1 patient with bilateral gentamicin vestibulotoxicity. Simultaneous video and search coil recordings of eye movements were closely comparable (average concordance correlation coefficient r(c) = 0.930). Mean VOR gains measured with search coils and video were not significantly different in normal (p = 0.107) and patients (p = 0.073). With these groups, the sensitivity and specificity of both the reference and index test were 1.0 (95% confidence interval 0.69-1.0). vHIT measures detected both overt and covert saccades as accurately as coils. The video head impulse test is equivalent to search coils in identifying peripheral vestibular deficits but easier to use in clinics, even in patients with acute vestibular neuritis.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Video Head Impulse Test

            In 1988, we introduced impulsive testing of semicircular canal (SCC) function measured with scleral search coils and showed that it could accurately and reliably detect impaired function even of a single lateral canal. Later we showed that it was also possible to test individual vertical canal function in peripheral and also in central vestibular disorders and proposed a physiological mechanism for why this might be so. For the next 20 years, between 1988 and 2008, impulsive testing of individual SCC function could only be accurately done by a few aficionados with the time and money to support scleral search-coil systems—an expensive, complicated and cumbersome, semi-invasive technique that never made the transition from the research lab to the dizzy clinic. Then, in 2009 and 2013, we introduced a video method of testing function of each of the six canals individually. Since 2009, the method has been taken up by most dizzy clinics around the world, with now close to 100 refereed articles in PubMed. In many dizzy clinics around the world, video Head Impulse Testing has supplanted caloric testing as the initial and in some cases the final test of choice in patients with suspected vestibular disorders. Here, we consider seven current, interesting, and controversial aspects of video Head Impulse Testing: (1) introduction to the test; (2) the progress from the head impulse protocol (HIMPs) to the new variant—suppression head impulse protocol (SHIMPs); (3) the physiological basis for head impulse testing; (4) practical aspects and potential pitfalls of video head impulse testing; (5) problems of vestibulo-ocular reflex gain calculations; (6) head impulse testing in central vestibular disorders; and (7) to stay right up-to-date—new clinical disease patterns emerging from video head impulse testing. With thanks and appreciation we dedicate this article to our friend, colleague, and mentor, Dr Bernard Cohen of Mount Sinai Medical School, New York, who since his first article 55 years ago on compensatory eye movements induced by vertical SCC stimulation has become one of the giants of the vestibular world.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Bilateral vestibulopathy: Diagnostic criteria Consensus document of the Classification Committee of the Bárány Society

              This paper describes the diagnostic criteria for bilateral vestibulopathy (BVP) by the Classification Committee of the Bárány Society. The diagnosis of BVP is based on the patient history, bedside examination and laboratory evaluation. Bilateral vestibulopathy is a chronic vestibular syndrome which is characterized by unsteadiness when walking or standing, which worsen in darkness and/or on uneven ground, or during head motion. Additionally, patients may describe head or body movement-induced blurred vision or oscillopsia. There are typically no symptoms while sitting or lying down under static conditions. The diagnosis of BVP requires bilaterally significantly impaired or absent function of the vestibulo-ocular reflex (VOR). This can be diagnosed for the high frequency range of the angular VOR by the head impulse test (HIT), the video-HIT (vHIT) and the scleral coil technique and for the low frequency range by caloric testing. The moderate range can be examined by the sinusoidal or step profile rotational chair test. For the diagnosis of BVP, the horizontal angular VOR gain on both sides should be <0.6 (angular velocity 150–300°/s) and/or the sum of the maximal peak velocities of the slow phase caloric-induced nystagmus for stimulation with warm and cold water on each side <6°/s and/or the horizontal angular VOR gain <0.1 upon sinusoidal stimulation on a rotatory chair (0.1 Hz, Vmax = 50°/sec) and/or a phase lead >68 degrees (time constant of <5 seconds). For the diagnosis of probable BVP the above mentioned symptoms and a bilaterally pathological bedside HIT are required. Complementary tests that may be used but are currently not included in the definition are: a) dynamic visual acuity (a decrease of ≥0.2 logMAR is considered pathological); b) Romberg (indicating a sensory deficit of the vestibular or somatosensory system and therefore not specific); and c) abnormal cervical and ocular vestibular-evoked myogenic potentials for otolith function. At present the scientific basis for further subdivisions into subtypes of BVP is not sufficient to put forward reliable or clinically meaningful definitions. Depending on the affected anatomical structure and frequency range, different subtypes may be better identified in the future: impaired canal function in the low- or high-frequency VOR range only and/or impaired otolith function only; the latter is evidently very rare. Bilateral vestibulopathy is a clinical syndrome and, if known, the etiology (e.g., due to ototoxicity, bilateral Menière’s disease, bilateral vestibular schwannoma) should be added to the diagnosis. Synonyms include bilateral vestibular failure, deficiency, areflexia, hypofunction and loss.

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                28 May 2019
                2019
                : 10
                : 550
                Affiliations
                [1] 1Division of Audiology and Neurootology, Department of Otorhinolaryngology (ORL), University Hospital Basel , Basel, Switzerland
                [2] 2Department of Neurology, University of Basel Hospital , Basel, Switzerland
                [3] 3Division of Brain Sciences, Academic Department of Neuro-Otology, Charing Cross Hospital, Imperial College , London, United Kingdom
                Author notes

                Edited by: Herman Kingma, Maastricht University, Netherlands

                Reviewed by: Eric Anson, University of Rochester, United States; Eugen Constant Ionescu, Hospices Civils de Lyon, France; Kristen Leigh Janky, Boys Town, United States

                *Correspondence: John H. J. Allum john.allum@ 123456usb.ch

                This article was submitted to Neuro-Otology, a section of the journal Frontiers in Neurology

                Article
                10.3389/fneur.2019.00550
                6546919
                099e731a-41b1-4ddd-a43e-64be263e9395
                Copyright © 2019 Allum, Rust and Honegger.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 November 2018
                : 07 May 2019
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 44, Pages: 10, Words: 7884
                Categories
                Neurology
                Original Research

                Neurology
                bilateral vestibular loss,posturography,vestibulo-spinal reflexes,vestibular evoked,vemps,vestibulo-ocular reflexes,video head impulse test

                Comments

                Comment on this article

                Related Documents Log