23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Seven common mistakes in population genetics and how to avoid them.

      1
      Molecular ecology
      Mantel test, amova, clustering, genome scan, population structure, unicorns

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As the data resulting from modern genotyping tools are astoundingly complex, genotyping studies require great care in the sampling design, genotyping, data analysis and interpretation. Such care is necessary because, with data sets containing thousands of loci, small biases can easily become strongly significant patterns. Such biases may already be present in routine tasks that are present in almost every genotyping study. Here, I discuss seven common mistakes that can be frequently encountered in the genotyping literature: (i) giving more attention to genotyping than to sampling, (ii) failing to perform or report experimental randomization in the laboratory, (iii) equating geopolitical borders with biological borders, (iv) testing significance of clustering output, (v) misinterpreting Mantel's r statistic, (vi) only interpreting a single value of k and (vii) forgetting that only a small portion of the genome will be associated with climate. For every of those issues, I give some suggestions how to avoid the mistake. Overall, I argue that genotyping studies would benefit from establishing a more rigorous experimental design, involving proper sampling design, randomization and better distinction of a priori hypotheses and exploratory analyses.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          The genetic structure and history of Africans and African Americans.

          Africa is the source of all modern humans, but characterization of genetic variation and of relationships among populations across the continent has been enigmatic. We studied 121 African populations, four African American populations, and 60 non-African populations for patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers. We identified 14 ancestral population clusters in Africa that correlate with self-described ethnicity and shared cultural and/or linguistic properties. We observed high levels of mixed ancestry in most populations, reflecting historical migration events across the continent. Our data also provide evidence for shared ancestry among geographically diverse hunter-gatherer populations (Khoesan speakers and Pygmies). The ancestry of African Americans is predominantly from Niger-Kordofanian (approximately 71%), European (approximately 13%), and other African (approximately 8%) populations, although admixture levels varied considerably among individuals. This study helps tease apart the complex evolutionary history of Africans and African Americans, aiding both anthropological and genetic epidemiologic studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A map of local adaptation in Arabidopsis thaliana.

            Local adaptation is critical for species persistence in the face of rapid environmental change, but its genetic basis is not well understood. Growing the model plant Arabidopsis thaliana in field experiments in four sites across the species' native range, we identified candidate loci for local adaptation from a genome-wide association study of lifetime fitness in geographically diverse accessions. Fitness-associated loci exhibited both geographic and climatic signatures of local adaptation. Relative to genomic controls, high-fitness alleles were generally distributed closer to the site where they increased fitness, occupying specific and distinct climate spaces. Independent loci with different molecular functions contributed most strongly to fitness variation in each site. Independent local adaptation by distinct genetic mechanisms may facilitate a flexible evolutionary response to changing environment across a species range.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The trouble with isolation by distance.

              The genetic population structure of many species is characterised by a pattern of isolation by distance (IBD): due to limited dispersal, individuals that are geographically close tend to be genetically more similar than individuals that are far apart. Despite the ubiquity of IBD in nature, many commonly used statistical tests are based on a null model that is completely non-spatial, the Island model. Here, I argue that patterns of spatial autocorrelation deriving from IBD present a problem for such tests as it can severely bias their outcome. I use simulated data to illustrate this problem for two widely used types of tests: tests of hierarchical population structure and the detection of loci under selection. My results show that for both types of tests the presence of IBD can indeed lead to a large number of false positives. I therefore argue that all analyses in a study should take the spatial dependence in the data into account, unless it can be shown that there is no spatial autocorrelation in the allele frequency distribution that is under investigation. Thus, it is urgent to develop additional statistical approaches that are based on a spatially explicit null model instead of the non-spatial Island model. © 2012 Blackwell Publishing Ltd.
                Bookmark

                Author and article information

                Journal
                Mol. Ecol.
                Molecular ecology
                1365-294X
                0962-1083
                Jul 2015
                : 24
                : 13
                Affiliations
                [1 ] Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090GE, Amsterdam, Netherlands.
                Article
                10.1111/mec.13243
                25974103
                09a4e304-7527-4a0c-bf40-7f993f44804e
                © 2015 John Wiley & Sons Ltd.
                History

                Mantel test,amova,clustering,genome scan,population structure,unicorns

                Comments

                Comment on this article