Blog
About

8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Post-exposure treatment of Ebola virus disease in guinea pigs using EBOTAb, an ovine antibody-based therapeutic

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ebola virus (EBOV) is highly pathogenic, with a predisposition to cause outbreaks in human populations accompanied by significant mortality. An ovine polyclonal antibody therapy has been developed against EBOV, named EBOTAb. When tested in the stringent guinea pig model of EBOV disease, EBOTAb has been shown to confer protection at levels of 83.3%, 50% and 33.3% when treatment was first started on days 3, 4 and 5 post-challenge, respectively. These timepoints of when EBOTAb treatment was initiated correspond to when levels of EBOV are detectable in the circulation and thus mimic when treatment would likely be initiated in human infection. The effects of EBOTAb were compared with those of a monoclonal antibody cocktail, ZMapp, when delivered on day 3 post-challenge. Results showed ZMapp to confer complete protection against lethal EBOV challenge in the guinea pig model at this timepoint. The data reported demonstrate that EBOTAb is an effective treatment against EBOV disease, even when delivered late after infection.

          Related collections

          Most cited references 60

          • Record: found
          • Abstract: found
          • Article: not found

          Emergence of Zaire Ebola virus disease in Guinea.

          In March 2014, the World Health Organization was notified of an outbreak of a communicable disease characterized by fever, severe diarrhea, vomiting, and a high fatality rate in Guinea. Virologic investigation identified Zaire ebolavirus (EBOV) as the causative agent. Full-length genome sequencing and phylogenetic analysis showed that EBOV from Guinea forms a separate clade in relationship to the known EBOV strains from the Democratic Republic of Congo and Gabon. Epidemiologic investigation linked the laboratory-confirmed cases with the presumed first fatality of the outbreak in December 2013. This study demonstrates the emergence of a new EBOV strain in Guinea.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp™

            Without an approved vaccine or treatment, Ebola outbreak management has been limited to palliative care and barrier methods to prevent transmission. These approaches, however, have yet to end the 2014 outbreak of Ebola after its prolonged presence in West Africa. Here we show that a combination of monoclonal antibodies (ZMapp™), optimized from two previous antibody cocktails, is able to rescue 100% of rhesus macaques when treatment is initiated up to 5 days post-challenge. High fever, viremia, and abnormalities in blood count and chemistry were evident in many animals before ZMapp™ intervention. Advanced disease, as indicated by elevated liver enzymes, mucosal hemorrhages and generalized petechia could be reversed, leading to full recovery. ELISA and neutralizing antibody assays indicate that ZMapp™ is cross-reactive with the Guinean variant of Ebola. ZMapp™ currently exceeds all previous descriptions of efficacy with other therapeutics, and results warrant further development of this cocktail for clinical use.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ebola haemorrhagic fever in Zaire, 1976.

              Between 1 September and 24 October 1976, 318 cases of acute viral haemorrhagic fever occurred in northern Zaire. The outbreak was centred in the Bumba Zone of the Equateur Region and most of the cases were recorded within a radius of 70 km of Yambuku, although a few patients sought medical attention in Bumba, Abumombazi, and the capital city of Kinshasa, where individual secondary and tertiary cases occurred. There were 280 deaths, and only 38 serologically confirmed survivors.The index case in this outbreak had onset of symptoms on 1 September 1976, five days after receiving an injection of chloroquine for presumptive malaria at the outpatient clinic at Yambuku Mission Hospital (YMH). He had a clinical remission of his malaria symptoms. Within one week several other persons who had received injections at YMH also suffered from Ebola haemorrhagic fever, and almost all subsequent cases had either received injections at the hospital or had had close contact with another case. Most of these occurred during the first four weeks of the epidemic, after which time the hospital was closed, 11 of the 17 staff members having died of the disease. All ages and both sexes were affected, but women 15-29 years of age had the highest incidence of disease, a phenomenon strongly related to attendance at prenatal and outpatient clinics at the hospital where they received injections. The overall secondary attack rate was about 5%, although it ranged to 20% among close relatives such as spouses, parent or child, and brother or sister.Active surveillance disclosed that cases occurred in 55 of some 550 villages which were examined house-by-house. The disease was hitherto unknown to the people of the affected region. Intensive search for cases in the area of north-eastern Zaire between the Bumba Zone and the Sudan frontier near Nzara and Maridi failed to detect definite evidence of a link between an epidemic of the disease in that country and the outbreak near Bumba. Nevertheless it was established that people can and do make the trip between Nzara and Bumba in not more than four days: thus it was regarded as quite possible that an infected person had travelled from Sudan to Yambuku and transferred the virus to a needle of the hospital while receiving an injection at the outpatient clinic.Both the incubation period, and the duration of the clinical disease averaged about one week. After 3-4 days of non-specific symptoms and signs, patients typically experienced progressively severe sore throat, developed a maculopapular rash, had intractable abdominal pain, and began to bleed from multiple sites, principally the gastrointestinal tract. Although laboratory determinations were limited and not conclusive, it was concluded that pathogenesis of the disease included non-icteric hepatitis and possibly acute pancreatitis as well as disseminated intravascular coagulation.This syndrome was caused by a virus morphologically similar to Marburg virus, but immunologically distinct. It was named Ebola virus. The agent was isolated from the blood of 8 of 10 suspected cases using Vero cell cultures. Titrations of serial specimens obtained from one patient disclosed persistent viraemia of 10(6.5)-10(4.5) infectious units from the third day of illness until death on the eighth day. Ebola virus particles were found in formalin-
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                28 July 2016
                2016
                : 6
                Affiliations
                [1 ]Public Health England, Porton Down , Salisbury, Wiltshire, SP4 0JG, UK
                [2 ]MicroPharm Ltd , Station Road, Newcastle Emlyn, Dyfed, SA38 9BY, UK
                [3 ]Public Health Agency of Canada , 1015 Arlington Street, Winnipeg, Manitoba R3E 3R2, Canada
                [4 ]University of Manitoba , 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
                Author notes
                Article
                srep30497
                10.1038/srep30497
                4964638
                27465308
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                Categories
                Article

                Uncategorized

                Comments

                Comment on this article