27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Controlling iterated jumps of solutions to combinatorial problems

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Among the Ramsey-type hierarchies, namely, Ramsey's theorem, the free set, the thin set and the rainbow Ramsey theorem, only Ramsey's theorem is known to collapse in reverse mathematics. A promising approach to show the strictness of the hierarchies would be to prove that every computable instance at level n has a low_n solution. In particular, this requires effective control of iterations of the Turing jump. In this paper, we design some variants of Mathias forcing to construct solutions to cohesiveness, the Erdos-Moser theorem and stable Ramsey's theorem for pairs, while controlling their iterated jumps. For this, we define forcing relations which, unlike Mathias forcing, have the same definitional complexity as the formulas they force. This analysis enables us to answer two questions of Wei Wang, namely, whether cohesiveness and the Erdos-Moser theorem admit preservation of the arithmetic hierarchy, and can be seen as a step towards the resolution of the strictness of the Ramsey-type hierarchies.

          Related collections

          Author and article information

          Journal
          2015-09-17
          2016-01-19
          Article
          1509.05340
          520eaa7a-1815-4d1e-9673-c79d459a2ac2

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          03B30, 03F35
          32 pages
          math.LO

          Logic & Foundation
          Logic & Foundation

          Comments

          Comment on this article