37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sequential Loading of Cohesin Subunits during the First Meiotic Prophase of Grasshoppers

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cohesin complexes play a key role in chromosome segregation during both mitosis and meiosis. They establish sister chromatid cohesion between duplicating DNA molecules during S-phase, but they also have an important role during postreplicative double-strand break repair in mitosis, as well as during recombination between homologous chromosomes in meiosis. An additional function in meiosis is related to the sister kinetochore cohesion, so they can be pulled by microtubules to the same pole at anaphase I. Data about the dynamics of cohesin subunits during meiosis are scarce; therefore, it is of great interest to characterize how the formation of the cohesin complexes is achieved in order to understand the roles of the different subunits within them. We have investigated the spatio-temporal distribution of three different cohesin subunits in prophase I grasshopper spermatocytes. We found that structural maintenance of chromosome protein 3 (SMC3) appears as early as preleptotene, and its localization resembles the location of the unsynapsed axial elements, whereas radiation-sensitive mutant 21 (RAD21) (sister chromatid cohesion protein 1, SCC1) and stromal antigen protein 1 (SA1) (sister chromatid cohesion protein 3, SCC3) are not visualized until zygotene, since they are located in the synapsed regions of the bivalents. During pachytene, the distribution of the three cohesin subunits is very similar and all appear along the trajectories of the lateral elements of the autosomal synaptonemal complexes. However, whereas SMC3 also appears over the single and unsynapsed X chromosome, RAD21 and SA1 do not. We conclude that the loading of SMC3 and the non-SMC subunits, RAD21 and SA1, occurs in different steps throughout prophase I grasshopper meiosis. These results strongly suggest the participation of SMC3 in the initial cohesin axis formation as early as preleptotene, thus contributing to sister chromatid cohesion, with a later association of both RAD21 and SA1 subunits at zygotene to reinforce and stabilize the bivalent structure. Therefore, we speculate that more than one cohesin complex participates in the sister chromatid cohesion at prophase I.

          Author Summary

          Meiosis is a specialized cell division by which sexually reproducing organisms prompt the formation of specialized cells presenting a half of the species chromosomal number. These cells, the so-called gametes, are able to fertilize or be fertilized, depending on the sex in which they are produced and thus restore the species chromosomal number after fertilization. The reduction in the chromosome number is achieved by two successive rounds of chromosome segregations preceded by a single replication of the genetic material. Different proteins, mainly referred to as cohesins, are implied in the correct establishment and maintenance of an intimate association between homologous chromosomes by ensuring their close association until their separation in the first meiotic division. Grasshoppers have been considered as a gorgeous model for meiotic studies for decades due to their low chromosomal number, the large size of their chromosomes, and the well-defined meiotic stages at cytological level. On these grounds, we have combined classical grasshopper chromosome knowledge with protein immunolocalization tools in order to precisely analyze the presence of cohesins throughout the prophase of the first meiotic division. The results not only describe the dynamic loading pattern of several cohesin subunits in two grasshopper species, but they also surprisingly bring into light that different cohesins are sequentially loaded onto meiotic chromosomes throughout the first meiotic prophase. Finally, we discuss the possible roles for this sequential protein loading in relation to the processes that operate during meiosis, proposing a model for meiotic chromosome structure. Besides the novel scientific contributions for a better understanding of the meiotic process, this study clearly points out that classical cytogenetic models can be used to solve modern biological problems.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Cohesins: chromosomal proteins that prevent premature separation of sister chromatids.

          Cohesion between sister chromatids opposes the splitting force exerted by microtubules, and loss of this cohesion is responsible for the subsequent separation of sister chromatids during anaphase. We describe three chromosmal proteins that prevent premature separation of sister chromatids in yeast. Two, Smc1p and Smc3p, are members of the SMC family, which are putative ATPases with coiled-coil domains. A third protein, which we call Scc1p, binds to chromosomes during S phase, dissociates from them at the metaphase-to-anaphase transition, and is degraded by the anaphase promoting complex. Association of Scc1p with chromatin depends on Smc1p. Proteins homologous to Scc1p exist in a variety of eukaryotic organisms including humans. A common cohesion apparatus might be used by all eukaryotic cells during both mitosis and meiosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins.

            Cohesion between sister chromatids depends on a multisubunit cohesin complex that binds to chromosomes around DNA replication and dissociates from them at the onset of anaphase. Scc2p, though not a cohesin subunit, is also required for sister chromatid cohesion. We show here that Scc2p forms a complex with a novel protein, Scc4p, which is also necessary for sister cohesion. In scc2 or scc4 mutants, cohesin complexes form normally but fail to bind both to centromeres and to chromosome arms. Our data suggest that a major role for the Scc2p/Scc4p complex is to facilitate the loading of cohesin complexes onto chromosomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The genetics and molecular biology of the synaptonemal complex.

              The synaptonemal complex (SC) is a protein lattice that resembles railroad tracks and connects paired homologous chromosomes in most meiotic systems. The two side rails of the SC, known as lateral elements (LEs), are connected by proteins known as transverse filaments. The LEs are derived from the axial elements of the chromosomes and play important roles in chromosome condensation, pairing, transverse filament assembly, and prohibiting double-strand breaks (DSBs) from entering into recombination pathways that involve sister chromatids. The proteins that make up the transverse filaments of the SC also play a much earlier role in committing a subset of DSBs into a recombination pathway, which results in the production of reciprocal meiotic crossovers. Sites of crossover commitment can be observed as locations where the SC initiates and as immunostaining foci for a set of proteins required for the processing of DSBs to mature crossovers. In most (but not all) organisms it is the establishment of sites marking such crossover-committed DSBs that facilitates completion of synapsis (full-length extension of the SC). The function of the mature full-length SC may involve both the completion of meiotic recombination at the DNA level and the exchange of the axial elements of the two chromatids involved in the crossover. However, the demonstration that the sites of crossover formation are designated prior to SC formation, and the finding that these sites display interference, argues against a role of the mature SC in mediating the process of interference. Finally, in at least some organisms, modifications of the SC alone are sufficient to ensure meiotic chromosome segregation in the complete absence of meiotic recombination.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                pgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                February 2007
                23 February 2007
                2 January 2007
                : 3
                : 2
                : e28
                Affiliations
                [1 ] Departamento de Biología, Edificio de Biológicas, Universidad Autónoma de Madrid, Madrid, Spain
                [2 ] Department of Immunology and Oncology, Centro Nacional de Biotecnología, Madrid, Spain
                [3 ] Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
                [4 ] Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
                [5 ] Departamento de Biología Celular y del Desarrollo, Centro de Investigaciones Biologicas (CSIC), Madrid, Spain
                Stowers Institute for Medical Research, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: julio.s.rufas@ 123456uam.es
                Article
                06-PLGE-RA-0392R2 plge-03-02-12
                10.1371/journal.pgen.0030028
                1802827
                17319746
                09bb9e82-f1e3-4695-9deb-ae47dc984a05
                Copyright: © 2007 Valdeolmillos et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 13 September 2006
                : 2 January 2007
                Page count
                Pages: 12
                Categories
                Research Article
                Cell Biology
                Genetics and Genomics
                Insects
                Grasshoppers
                Custom metadata
                Valdeolmillos AM, Viera A, Page J, Prieto I, Santos JL, et al. (2007) Sequential loading of cohesin subunits during the first meiotic prophase of grasshoppers. PLoS Genet 3(2): e28. doi: 10.1371/journal.pgen.0030028

                Genetics
                Genetics

                Comments

                Comment on this article