17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The current and potential applications of Ambient Mass Spectrometry in detecting food fraud

      , ,
      TrAC Trends in Analytical Chemistry
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Versatile new ion source for the analysis of materials in open air under ambient conditions.

          A new ion source has been developed for rapid, noncontact analysis of materials at ambient pressure and at ground potential. The new source, termed DART (for "Direct Analysis in Real Time"), is based on the reactions of electronic or vibronic excited-state species with reagent molecules and polar or nonpolar analytes. DART has been installed on a high-resolution time-of-flight mass spectrometer (TOFMS) that provides improved selectivity and accurate elemental composition assignment through exact mass measurements. Although DART has been applied to the analysis of gases, liquids, and solids, a unique application is the direct detection of chemicals on surfaces without requiring sample preparation, such as wiping or solvent extraction. DART has demonstrated success in sampling hundreds of chemicals, including chemical agents and their signatures, pharmaceutics, metabolites, peptides and oligosaccharides, synthetic organics, organometallics, drugs of abuse, explosives, and toxic industrial chemicals. These species were detected on various surfaces, such as concrete, asphalt, human skin, currency, airline boarding passes, business cards, fruits, vegetables, spices, beverages, body fluids, horticultural leaves, cocktail glasses, and clothing. DART employs no radioactive components and is more versatile than devices using radioisotope-based ionization. Because its response is instantaneous, DART provides real-time information, a critical requirement for screening or high throughput.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global metabolic profiling of animal and human tissues via UPLC-MS.

            Obtaining comprehensive, untargeted metabolic profiles for complex solid samples, e.g., animal tissues, requires sample preparation and access to information-rich analytical methodologies such as mass spectrometry (MS). Here we describe a practical two-step process for tissue samples that is based on extraction into 'aqueous' and 'organic' phases for polar and nonpolar metabolites. Separation methods such as ultraperformance liquid chromatography (UPLC) in combination with MS are needed to obtain sufficient resolution to create diagnostic metabolic profiles and identify candidate biomarkers. We provide detailed protocols for sample preparation, chromatographic procedures, multivariate analysis and metabolite identification via tandem MS (MS/MS) techniques and high-resolution MS. By using these optimized approaches, analysis of a set of samples using a 96-well plate format would take ~48 h: 1 h for system setup, 8-10 h for sample preparation, 34 h for UPLC-MS analysis and 2-3 h for preliminary/exploratory data processing, representing a robust method for untargeted metabolic screening of tissue samples.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology.

              Analytical characteristics of DESI are summarized. Examples of applications to small and large molecules, to in situ analysis, and to high-throughput analyses are presented. Evidence is provided for both a heterogeneous charge-transfer mechanism and a droplet pick-up mechanism of ionization. The speed, lack of the need for sample preparation, selectivity, and sensitivity of DESI are all demonstrated and discussed. Instrumentation is also discussed. Forensic applications as well as emerging areas of application including tissue imaging are given emphasis. Copyright (c) 2005 John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Journal
                TrAC Trends in Analytical Chemistry
                TrAC Trends in Analytical Chemistry
                Elsevier BV
                01659936
                September 2016
                September 2016
                : 82
                :
                : 268-278
                Article
                10.1016/j.trac.2016.06.005
                09d116ad-7637-401f-9a1f-e67516730c69
                © 2016
                History

                Comments

                Comment on this article