29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis.

      1 , ,
      Cancer research
      American Association for Cancer Research (AACR)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The recent development of hormonal therapy that blocks estrogen synthesis represents a major advance in the treatment of estrogen receptor-positive breast cancer. However, cancer cells often acquire adaptations resulting in resistance. A recent report reveals that estrogen starvation-induced apoptosis of breast cancer cells requires BIK, an apoptotic BH3-only protein located primarily at the endoplasmic reticulum (ER). Searching for novel partners that interact with BIK at the ER, we discovered that BIK selectively forms complex with the glucose-regulated protein GRP78/BiP, a major ER chaperone with prosurvival properties naturally induced in the tumor microenvironment. GRP78 overexpression decreases apoptosis of 293T cells induced by ER-targeted BIK. For estrogen-dependent MCF-7/BUS breast cancer cells, overexpression of GRP78 inhibits estrogen starvation-induced BAX activation, mitochondrial permeability transition, and consequent apoptosis. Further, knockdown of endogenous GRP78 by small interfering RNA (siRNA) sensitizes MCF-7/BUS cells to estrogen starvation-induced apoptosis. This effect was substantially reduced when the expression of BIK was also reduced by siRNA. Our results provide the first evidence that GRP78 confers resistance to estrogen starvation-induced apoptosis in human breast cancer cells via a novel mechanism mediated by BIK. These results further suggest that GRP78 expression level in the tumor cells may serve as a prognostic marker for responsiveness to hormonal therapy based on estrogen starvation and that combination therapy targeting GRP78 may enhance efficacy and reduce resistance.

          Related collections

          Author and article information

          Journal
          Cancer Res
          Cancer research
          American Association for Cancer Research (AACR)
          0008-5472
          0008-5472
          Apr 15 2007
          : 67
          : 8
          Affiliations
          [1 ] Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Los Angeles, CA 90089, USA.
          Article
          67/8/3734
          10.1158/0008-5472.CAN-06-4594
          17440086
          09ebd787-2bb4-4d51-91b6-d306a8638084
          History

          Comments

          Comment on this article