24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Green Tea Catechin Is an Alternative Immune Checkpoint Inhibitor that Inhibits PD-L1 Expression and Lung Tumor Growth

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The anticancer activity of immune checkpoint inhibitors is attracting attention in various clinical sites. Since green tea catechin has cancer-preventive activity in humans, whether green tea catechin supports the role of immune checkpoint inhibitors was studied. We here report that (−)-epigallocatechin gallate (EGCG) inhibited programmed cell death ligand 1 (PD-L1) expression in non–small-cell lung cancer cells, induced by both interferon (IFN)-γ and epidermal growth factor (EGF). The mRNA and protein levels of IFN-γ–induced PD-L1 were reduced 40–80% after pretreatment with EGCG and green tea extract (GTE) in A549 cells, via inhibition of JAK2/STAT1 signaling. Similarly, EGF-induced PD-L1 expression was reduced about 37–50% in EGCG-pretreated Lu99 cells through inhibition of EGF receptor/Akt signaling. Furthermore, 0.3% GTE in drinking water reduced the average number of tumors per mouse from 4.1 ± 0.5 to 2.6 ± 0.4 and the percentage of PD-L1 positive cells from 9.6% to 2.9%, a decrease of 70%, in lung tumors of A/J mice given a single intraperitoneal injection of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In co-culture experiments using F10-OVA melanoma cells and tumor-specific CD3+ T cells, EGCG reduced PD-L1 mRNA expression about 30% in F10-OVA cells and restored interleukin-2 mRNA expression in tumor-specific CD3+ T cells. The results show that green tea catechin is an immune checkpoint inhibitor.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors.

          The success in lung cancer therapy with programmed death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between EGF receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, CTL antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased CTLs and increased markers of T-cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T-cell function and lowering the levels of tumor-promoting cytokines. Expression of mutant EGFR in bronchial epithelial cells induced PD-L1, and PD-L1 expression was reduced by EGFR inhibitors in non-small cell lung cancer cell lines with activated EGFR. These data suggest that oncogenic EGFR signaling remodels the tumor microenvironment to trigger immune escape and mechanistically link treatment response to PD-1 inhibition. We show that autochthonous EGFR-driven lung tumors inhibit antitumor immunity by activating the PD-1/PD-L1 pathway to suppress T-cell function and increase levels of proinflammatory cytokines. These findings indicate that EGFR functions as an oncogene through non-cell-autonomous mechanisms and raise the possibility that other oncogenes may drive immune escape. ©2013 AACR.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coinhibitory Pathways in Immunotherapy for Cancer.

            The immune system is capable of recognizing tumors and eliminates many early malignant cells. However, tumors evolve to evade immune attack, and the tumor microenvironment is immunosuppressive. Immune responses are regulated by a number of immunological checkpoints that promote protective immunity and maintain tolerance. T cell coinhibitory pathways restrict the strength and duration of immune responses, thereby limiting immune-mediated tissue damage, controlling resolution of inflammation, and maintaining tolerance to prevent autoimmunity. Tumors exploit these coinhibitory pathways to evade immune eradication. Blockade of the PD-1 and CTLA-4 checkpoints is proving to be an effective and durable cancer immunotherapy in a subset of patients with a variety of tumor types, and additional combinations are further improving response rates. In this review we discuss the immunoregulatory functions of coinhibitory pathways and their translation to effective immunotherapies for cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of PD-L1 Expression by Oncogenic Activation of the AKT-mTOR Pathway in Non-Small Cell Lung Cancer.

              Alterations in EGFR, KRAS, and ALK are oncogenic drivers in lung cancer, but how oncogenic signaling influences immunity in the tumor microenvironment is just beginning to be understood. Immunosuppression likely contributes to lung cancer, because drugs that inhibit immune checkpoints like PD-1 and PD-L1 have clinical benefit. Here, we show that activation of the AKT-mTOR pathway tightly regulates PD-L1 expression in vitro and in vivo. Both oncogenic and IFNγ-mediated induction of PD-L1 was dependent on mTOR. In human lung adenocarcinomas and squamous cell carcinomas, membranous expression of PD-L1 was significantly associated with mTOR activation. These data suggest that oncogenic activation of the AKT-mTOR pathway promotes immune escape by driving expression of PD-L1, which was confirmed in syngeneic and genetically engineered mouse models of lung cancer where an mTOR inhibitor combined with a PD-1 antibody decreased tumor growth, increased tumor-infiltrating T cells, and decreased regulatory T cells.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
                MDPI
                1420-3049
                18 August 2018
                August 2018
                : 23
                : 8
                : 2071
                Affiliations
                [1 ]Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan; ewmedsci@ 123456gmail.com (A.R.); wongsiri.patt@ 123456gmail.com (P.W.); k.namiki1080@ 123456gmail.com (K.N.)
                [2 ]Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama 362-0806, Japan
                [3 ]Molecular Chirality Research Center and Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; kiida@ 123456chiba-u.jp
                [4 ]Saitama Cardiovascular and Respiratory Center, Kumagaya, Saitama 360-0197, Japan; kobayashiyasuhito@ 123456yahoo.co.jp (Y.K.); shimizu.yoshihiko@ 123456pref.saitama.lg.jp (Y.S.)
                [5 ]Faculty of Medicine, Saga University, Saga 849-8501, Japan; uv4h-fjk@ 123456asahi-net.or.jp
                Author notes
                [* ]Correspondence: masami0306@ 123456mail.saitama-u.ac.jp ; Tel.: +81-48-722-1111
                Author information
                https://orcid.org/0000-0003-1620-756X
                https://orcid.org/0000-0001-7884-2484
                https://orcid.org/0000-0002-4257-6695
                Article
                molecules-23-02071
                10.3390/molecules23082071
                6222340
                30126206
                09fa0ddf-1fc1-42e0-84a4-b23cb7a38966
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 July 2018
                : 16 August 2018
                Categories
                Article

                (−)-epigallocatechin gallate,immune checkpoint,interferon-γ,epidermal growth factor,lung tumor

                Comments

                Comment on this article