132
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Paramecium Germline Genome Provides a Niche for Intragenic Parasitic DNA: Evolutionary Dynamics of Internal Eliminated Sequences

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES) from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of ∼45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a ∼10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a fraction of the genome in which parasitic DNA is not usually tolerated.

          Author Summary

          Ciliates are unicellular eukaryotes that rearrange their genomes at every sexual generation when a new somatic macronucleus, responsible for gene expression, develops from a copy of the germline micronucleus. In Paramecium, assembly of a functional somatic genome requires precise excision of interstitial DNA segments, the Internal Eliminated Sequences (IES), involving a domesticated piggyBac transposase, PiggyMac. To study IES origin and evolution, we sequenced germline DNA and identified 45,000 IESs. We found that at least some of these unique-copy elements are decayed Tc1/mariner transposons and that IES insertion is likely an ongoing process. After insertion, elements decay rapidly by accumulation of deletions and substitutions. The 93% of IESs shorter than 150 bp display a remarkable size distribution with a periodicity of 10 bp, the helical repeat of double-stranded DNA, consistent with the idea that evolution has only retained IESs that can form a double-stranded DNA loop during assembly of an excision complex. We propose that the ancient domestication of a piggyBac transposase, which provided a precise excision mechanism, enabled transposons to subsequently invade Paramecium coding sequences, a fraction of the genome that does not usually tolerate parasitic DNA.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data.

          O. Gascuel (1997)
          We propose an improved version of the neighbor-joining (NJ) algorithm of Saitou and Nei. This new algorithm, BIONJ, follows the same agglomerative scheme as NJ, which consists of iteratively picking a pair of taxa, creating a new mode which represents the cluster of these taxa, and reducing the distance matrix by replacing both taxa by this node. Moreover, BIONJ uses a simple first-order model of the variances and covariances of evolutionary distance estimates. This model is well adapted when these estimates are obtained from aligned sequences. At each step it permits the selection, from the class of admissible reductions, of the reduction which minimizes the variance of the new distance matrix. In this way, we obtain better estimates to choose the pair of taxa to be agglomerated during the next steps. Moreover, in comparison with NJ's estimates, these estimates become better and better as the algorithm proceeds. BIONJ retains the good properties of NJ--especially its low run time. Computer simulations have been performed with 12-taxon model trees to determine BIONJ's efficiency. When the substitution rates are low (maximum pairwise divergence approximately 0.1 substitutions per site) or when they are constant among lineages, BIONJ is only slightly better than NJ. When the substitution rates are higher and vary among lineages,BIONJ clearly has better topological accuracy. In the latter case, for the model trees and the conditions of evolution tested, the topological error reduction is on the average around 20%. With highly-varying-rate trees and with high substitution rates (maximum pairwise divergence approximately 1.0 substitutions per site), the error reduction may even rise above 50%, while the probability of finding the correct tree may be augmented by as much as 15%.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RNA silencing in plants.

            There are at least three RNA silencing pathways for silencing specific genes in plants. In these pathways, silencing signals can be amplified and transmitted between cells, and may even be self-regulated by feedback mechanisms. Diverse biological roles of these pathways have been established, including defence against viruses, regulation of gene expression and the condensation of chromatin into heterochromatin. We are now in a good position to investigate the full extent of this functional diversity in genetic and epigenetic mechanisms of genome control.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Specific interference by ingested dsRNA.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                October 2012
                October 2012
                4 October 2012
                08 October 2012
                : 8
                : 10
                : e1002984
                Affiliations
                [1 ]CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France
                [2 ]Département de Biologie, Université Paris-Sud, Orsay, France
                [3 ]CNRS FRC3115, Centre de Recherches de Gif–sur-Yvette, Gif-sur-Yvette, France
                [4 ]Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France
                [5 ]INSERM, U1024, Paris, France
                [6 ]CNRS, UMR 8197, Paris, France
                [7 ]Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
                [8 ]Methodology Institute, London School of Economics, London, United Kingdom
                [9 ]Institute of Cell Biology, University of Bern, Bern, Switzerland
                [10 ]Department of Experimental Zoology, Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
                [11 ]Centre National de Recherche Scientifique (CNRS), UMR 8030, CP5706, Evry, France
                [12 ]Université d'Evry, Evry, France
                [13 ]Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
                [14 ]Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
                Fred Hutchinson Cancer Research Center, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MB LD SD EM SM LS. Performed the experiments: MB CB SD CDW NM SM AM MN OG ALM MP EM. Analyzed the data: OA CDW LD LS. Wrote the paper: OA MB LD SD BEL EM SM LS. Mathematical model: BEL. DNA sequencing: J-MA KL JP PW.

                [¤]

                Current address: UMR7216 Epigénétique et Destin Cellulaire, CNRS, Université Paris-Diderot/Paris 7, Paris, France

                Article
                PGENETICS-D-12-00695
                10.1371/journal.pgen.1002984
                3464196
                23071448
                09fd702d-6472-4049-9ec5-d98e14f6deb2
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 16 March 2012
                : 9 August 2012
                Page count
                Pages: 18
                Funding
                This work was supported by the ANR BLAN08-3_310945 “ParaDice,” the ANR 2010 BLAN 1603 “GENOMAC,” a CNRS ATIP-Plus grant to MB (2010–2011), and an “Equipe FRM” grant to EM. The sequencing was carried out at the Genoscope - Centre National de Séquençage (Convention GENOSCOPE-CEA number 128/AP 2007_2008/CNRS number 028666). CDW and AM were supported by Ph.D. fellowships from the Ministère de l'Enseignement Supérieur et de la Recherche. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Genomics
                Comparative Genomics
                Genome Evolution
                Genome Sequencing
                Molecular Genetics
                Sequence Analysis
                Evolutionary Biology
                Genomic Evolution
                Genomics
                Comparative Genomics
                Molecular Cell Biology
                Nucleic Acids
                DNA
                DNA recombination
                DNA repair
                Transposons
                DNA transposons

                Genetics
                Genetics

                Comments

                Comment on this article