9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      eIF2B promotes eIF5 dissociation from eIF2•GDP to facilitate guanine nucleotide exchange for translation initiation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein synthesis factor eIF2 delivers initiator tRNA to the ribosome. Two proteins regulate its G-protein cycle: eIF5 has both GTPase-activating protein (GAP) and GDP dissociation inhibitor (GDI) functions, and eIF2B is the guanine nucleotide exchange factor (GEF). Jennings et al. now establish a second activity for eIF2B (as a GDI displacement factor [GDF]) and demonstrate that this function is independent of its GEF activity. This study suggests that eIF2B is a bifunctional protein and defines an additional step in the protein synthesis initiation pathway.

          Abstract

          Protein synthesis factor eIF2 delivers initiator tRNA to the ribosome. Two proteins regulate its G-protein cycle: eIF5 has both GTPase-accelerating protein (GAP) and GDP dissociation inhibitor (GDI) functions, and eIF2B is the guanine nucleotide exchange factor (GEF). In this study, we used protein–protein interaction and nucleotide exchange assays to monitor the kinetics of eIF2 release from the eIF2•GDP/eIF5 GDI complex and determine the effect of eIF2B on this release. We demonstrate that eIF2B has a second activity as a GDI displacement factor (GDF) that can recruit eIF2 from the eIF2•GDP/eIF5 GDI complex prior to GEF action. We found that GDF function is dependent on the eIF2Bɛ and eIF2Bγ subunits and identified a novel eIF2–eIF2Bγ interaction. Furthermore, GDF and GEF activities are shown to be independent. First, eIF2B GDF is insensitive to eIF2α phosphorylation, unlike GEF. Second, we found that eIF2Bγ mutations known to disrupt GCN4 translational control significantly impair GDF activity but not GEF function. Our data therefore define an additional step in the protein synthesis initiation pathway that is important for its proper control. We propose a new model to place eIF2B GDF function in the context of efficient eIF2 recycling and its regulation by eIF2 phosphorylation.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          The mechanism of eukaryotic translation initiation and principles of its regulation.

          Protein synthesis is principally regulated at the initiation stage (rather than during elongation or termination), allowing rapid, reversible and spatial control of gene expression. Progress over recent years in determining the structures and activities of initiation factors, and in mapping their interactions in ribosomal initiation complexes, have advanced our understanding of the complex translation initiation process. These developments have provided a solid foundation for studying the regulation of translation initiation by mechanisms that include the modulation of initiation factor activity (which affects almost all scanning-dependent initiation) and through sequence-specific RNA-binding proteins and microRNAs (which affect individual mRNAs).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites.

            We describe the production of new alleles of the LEU2, URA3 and TRP1 genes of Saccharomyces cerevisiae by in vitro mutagenesis. Each new allele, which lacks restriction enzyme recognition sequences found in the pUC19 multicloning site, was used to construct a unique series of yeast-Escherichia coli shuttle vectors derived from the plasmid pUC19. For each gene a 2 mu vector (YEplac), an ARS1 CEN4 vector (YCplac) and an integrative vector (YIplac) was constructed. The features of these vectors include (i) small size; (ii) unique recognition site for each restriction enzyme found in the pUC19 multicloning site; (iii) screening for plasmids containing inserts by color assay; (iv) high plasmid yield; (v) efficient transformation of S. cerevisiae. These vectors should allow greater flexibility with regard to DNA restriction fragment manipulation and subcloning.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism.

              Regulation of mRNA translation is a rapid and effective means to couple changes in the cellular environment with global rates of protein synthesis. In response to stresses, such as nutrient deprivation and accumulation of misfolded proteins in the endoplasmic reticulum, phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α~P) reduces general translation initiation while facilitating the preferential translation of select transcripts, such as that encoding activating transcription factor 4 (ATF4), a transcriptional activator of genes subject to the integrated stress response (ISR). In this review, we highlight the translational control processes regulated by nutritional stress, with an emphasis on the events triggered by eIF2α~P, and describe the family of eukaryotic initiation factor 2 kinases and the mechanisms by which each sense different stresses. We then address 3 questions. First, what are the mechanisms by which eIF2α~P confers preferential translation on select mRNA and what are the consequences of the gene expression induced by the ISR? Second, what are the molecular processes by which certain stresses can differentially activate eIF2α~P and ATF4 expression? The third question we address is what are the modes of cross-regulation between the ISR and other stress response pathways, such as the unfolded protein response and mammalian target of rapamycin, and how do these regulatory schemes provide for gene expression programs that are tailored for specific stresses? This review highlights recent advances in each of these areas of research, emphasizing how eIF2α~P and the ISR can affect metabolic health and disease.
                Bookmark

                Author and article information

                Journal
                Genes Dev
                Genes Dev
                GAD
                Genes & Development
                Cold Spring Harbor Laboratory Press
                0890-9369
                1549-5477
                15 December 2013
                15 December 2013
                : 27
                : 24
                : 2696-2707
                Affiliations
                The Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
                Author notes
                [1 ]Corresponding author E-mail graham.pavitt@ 123456manchester.ac.uk
                Article
                8711660
                10.1101/gad.231514.113
                3877758
                24352424
                09ffc67f-ff1c-4898-b45c-558f0afdb9a2
                © 2013 Jennings et al.; Published by Cold Spring Harbor Laboratory Press

                This article, published in Genes & Development, is available under a Creative Commons License (Attribution 3.0 Unported), as described at http://creativecommons.org/licenses/by/3.0/.

                History
                : 25 September 2013
                : 7 November 2013
                Page count
                Pages: 12
                Categories
                Research Paper

                protein synthesis initiation,g-protein regulators,gef,gdf,gdi

                Comments

                Comment on this article