31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A New Basal Caniform (Mammalia: Carnivora) from the Middle Eocene of North America and Remarks on the Phylogeny of Early Carnivorans

      research-article
      *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Despite a long history of research, the phylogenetic origin and initial diversification of the mammalian crown-group Carnivora remain elusive. Well-preserved fossil materials of basal carnivorans are essential for resolving these issues, and for constraining the timing of the carnivoran origin, which constitutes an important time-calibration point in mammalian phylogenetics.

          Methodology/Principal Findings

          A new carnivoramorphan from the middle Eocene of southern California, Lycophocyon hutchisoni, is described. The new taxon exhibits stages of dental and basicranial evolution that are intermediate between earlier carnivoramorphans and the earliest representatives of canoid carnivorans. The evolutionary affinity of the new taxon was determined by a cladistic analysis of previously-published and newly-acquired morphological data for 30 Paleogene carnivoramorphans. The most-parsimonious trees identified L. hutchisoni as a basal caniform carnivoran, and placed (1) Tapocyon robustus, Quercygale angustidens, “ Miacissylvestris, “ M.uintensis, and “ M.gracilis inside or outside the Carnivora, (2) nimravids within the Feliformia, and (3) the amphicyonid Daphoenus outside the crown-group Canoidea. Parsimony reconstructions of ancestral character states suggest that loss of the upper third molars and development of well-ossified entotympanics that are firmly fused to the basicranium (neither condition is observed in L. hutchisoni) are not associated with the origin of the Carnivora as traditionally thought, but instead occurred independently in the Caniformia and the Feliformia. A discriminant analysis of the estimated body weight and dental ecomorphology predicted a mesocarnivorous diet for L. hutchisoni, and the postcranial morphology suggests a scansorial habit.

          Conclusions/Significance

          Lycophocyon hutchisoni illuminates the morphological evolution of early caniforms leading to the origin of crown-group canoids. Considerable uncertainty remains with respect to the phylogenetic origin of the Carnivora. The minimum date of caniform-feliform divergence is provisionally suggested to be either 47 million years ago or 38 million years ago, depending on the position of “ Miacissylvestris within or outside the Carnivora, respectively.

          Related collections

          Most cited references223

          • Record: found
          • Abstract: found
          • Article: not found

          The delayed rise of present-day mammals.

          Did the end-Cretaceous mass extinction event, by eliminating non-avian dinosaurs and most of the existing fauna, trigger the evolutionary radiation of present-day mammals? Here we construct, date and analyse a species-level phylogeny of nearly all extant Mammalia to bring a new perspective to this question. Our analyses of how extant lineages accumulated through time show that net per-lineage diversification rates barely changed across the Cretaceous/Tertiary boundary. Instead, these rates spiked significantly with the origins of the currently recognized placental superorders and orders approximately 93 million years ago, before falling and remaining low until accelerating again throughout the Eocene and Oligocene epochs. Our results show that the phylogenetic 'fuses' leading to the explosion of extant placental orders are not only very much longer than suspected previously, but also challenge the hypothesis that the end-Cretaceous mass extinction event had a major, direct influence on the diversification of today's mammals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Paleontological evidence to date the tree of life.

            The role of fossils in dating the tree of life has been misunderstood. Fossils can provide good "minimum" age estimates for branches in the tree, but "maximum" constraints on those ages are poorer. Current debates about which are the "best" fossil dates for calibration move to consideration of the most appropriate constraints on the ages of tree nodes. Because fossil-based dates are constraints, and because molecular evolution is not perfectly clock-like, analysts should use more rather than fewer dates, but there has to be a balance between many genes and few dates versus many dates and few genes. We provide "hard" minimum and "soft" maximum age constraints for 30 divergences among key genome model organisms; these should contribute to better understanding of the dating of the animal tree of life.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resolution of the early placental mammal radiation using Bayesian phylogenetics.

              Molecular phylogenetic studies have resolved placental mammals into four major groups, but have not established the full hierarchy of interordinal relationships, including the position of the root. The latter is critical for understanding the early biogeographic history of placentals. We investigated placental phylogeny using Bayesian and maximum-likelihood methods and a 16.4-kilobase molecular data set. Interordinal relationships are almost entirely resolved. The basal split is between Afrotheria and other placentals, at about 103 million years, and may be accounted for by the separation of South America and Africa in the Cretaceous. Crown-group Eutheria may have their most recent common ancestry in the Southern Hemisphere (Gondwana).
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                14 September 2011
                : 6
                : 9
                : e24146
                Affiliations
                [1]Museum of Paleontology, Museum of Vertebrate Zoology, and Department of Integrative Biology, University of California, Berkeley, California, United States of America
                University College London, United Kingdom
                Author notes

                Analyzed the data: ST. Wrote the paper: ST.

                Article
                PONE-D-10-04421
                10.1371/journal.pone.0024146
                3173397
                21935380
                0a02dc70-8e1b-47f8-9be6-0f6a04cfee6a
                Susumu Tomiya. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 November 2010
                : 5 August 2011
                Page count
                Pages: 24
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Paleontology
                Paleoecology
                Vertebrate Paleontology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article