29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A High-Throughput Gene Disruption Methodology for the Entomopathogenic Fungus Metarhizium robertsii

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Systematic gene disruption is a direct way to interrogate a fungal genome to functionally characterize the full suite of genes involved in various biological processes. Metarhizium robertsii is extraordinarily versatile, and it is a pathogen of arthropods, a saprophyte and a beneficial colonizer of rhizospheres. Thus, M. robertsii can be used as a representative to simultaneously study several major lifestyles that are not shared by the “model” fungi Saccharomyces cerevisiae and Neurospora crassa; a systematic genetic analysis of M. robertsii will benefit studies in other fungi. In order to systematically disrupt genes in M. robertsii, we developed a high-throughput gene disruption methodology, which includes two technologies. One is the modified OSCAR-based, high-throughput construction of gene disruption plasmids. This technology involves two donor plasmids (pA-Bar-OSCAR with the herbicide resistance genes Bar and pA-Sur-OSCAR with another herbicide resistance gene Sur) and a recipient binary plasmid pPK2-OSCAR-GFP that was produced by replacing the Bar cassette in pPK2-bar-GFP with a ccdB cassette and recombination recognition sites. Using this technology, a gene disruption plasmid can be constructed in one cloning step in two days. The other is a highly efficient gene disruption technology based on homologous recombination using a Ku70 deletion mutant ( ΔMrKu70) as the recipient strain. The deletion of MrKu70, a gene encoding a key component involved in nonhomologous end-joining DNA repair in fungi, dramatically increases the gene disruption efficiency. The frequency of disrupting the conidiation-associated gene Cag8 in ΔMrKu70 was 93% compared to 7% in the wild-type strain. Since ΔMrKu70 is not different from the wild-type strain in development, pathogenicity and tolerance to various abiotic stresses, it can be used as a recipient strain for a systematic gene disruption project to characterize the whole suite of genes involved in the biological processes of M. robertsii.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining.

          Gene disruption and overexpression play central roles in the analysis of gene function. Homologous recombination is, in principle, the most efficient method of disrupting, modifying, or replacing a target gene. Although homologous integration of exogenous DNA into the genome occurs readily in Saccharomyces cerevisiae, it is rare in many other organisms. We identified and disrupted Neurospora crassa genes homologous to human KU70 and KU80, which encode proteins that function in nonhomologous end-joining of double-stranded DNA breaks. The resulting mutants, named mus-51 and mus-52, showed higher sensitivity to methyl methanesulfonate, ethyl methanesulfonate, and bleomycin than wild type, but not to UV, 4-nitroquinoline 1-oxide, camptothecin, or hydroxyurea. Vegetative growth, conidiation, and ascospore production in homozygous crosses were normal. The frequency of integration of exogenous DNA into homologous sequences of the genome in the KU disruption strains of N. crassa was compared with that in wild type, mei-3, and mus-11. In mei-3 and mus-11, which are defective in homologous recombination, none or few homologous integration events were observed under any conditions. When mtr target DNA with approximately 2-kb 5' and 3' flanking regions was used for transformation of the KU disruption strains, 100% of transformants exhibited integration at the homologous site, compared to 10 to 30% for a wild-type recipient. Similar results were obtained when the ad-3A gene was targeted for disruption. These results indicate that KU disruption strains are efficient recipients for gene targeting.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Highly efficient gene targeting in the Aspergillus niger kusA mutant.

              Gene targeting frequencies in Aspergillus niger are often very low and hamper efficient functional genomics in this biotechnologically important fungus. Deletion of the A. niger kusA gene encoding the ortholog of the Ku70 protein in other eukaryotes, dramatically improved homologous integration efficiency and reached more than 80% compared to 7% in the wild-type background, when 500bp homologous flanks were used. Furthermore, the use of the DeltakusA strain resulted in a high frequency of heterokaryon formation (70%) in primary transformants in the case disrupting an essential gene. Deletion of kusA had no obvious effect on the growth of the fungus, but renders the DeltakusA strain 10 times more sensitive to X-ray irradiation and two to three times more sensitive to UV exposure. The highly efficient gene targeting in combination with the A. niger genome sequence allows a systematic approach to generate gene knockouts and will help in improving the capacities of A. niger as producer of commercially interesting proteins and metabolites.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                15 September 2014
                : 9
                : 9
                : e107657
                Affiliations
                [1]Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
                California Department of Public Health, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: WF CX HZ. Performed the experiments: CX XZ YQ XC RL GZ HZ WF. Analyzed the data: WF CX. Contributed to the writing of the manuscript: CX WF.

                Article
                PONE-D-14-23999
                10.1371/journal.pone.0107657
                4164657
                25222118
                0a08e8a4-5447-45ef-9d1c-390fd8c21dc6
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 May 2014
                : 14 August 2014
                Page count
                Pages: 7
                Funding
                This work was funded by the National Natural Science Foundation of China (31272097) and Zhejiang Provincial Natural Science Foundation of China (LR13C010001) and “1000 Young Talents Program of China” to W.F. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Agriculture
                Agrochemicals
                Pesticides
                Pest Control
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Fungal Pathogens
                Molecular Biology
                Molecular Biology Techniques
                Mutagenesis and Gene Deletion Techniques
                Gene Deletion Analysis
                Artificial Genetic Recombination
                Genetic Transformation
                Mycology
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article