24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Apolipoprotein(a) Inhibits In Vitro Tube Formation in Endothelial Cells: Identification of Roles for Kringle V and the Plasminogen Activation System

      research-article
      1 , 2 , * , 2
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Elevated plasma concentrations of lipoprotein(a) are associated with increased risk for atherothrombotic diseases. Apolipoprotein(a), the unique glycoprotein component of lipoprotein(a), is characterized by the presence of multiple kringle domains, and shares a high degree of sequence homology with the serine protease zymogen plasminogen. It has been shown that angiostatin, a proteolytic fragment of plasminogen containing kringles 1–4, can effectively inhibit angiogenesis. Moreover, proteolytic fragments of plasminogen containing kringle 5 are even more potent inhibitors of angiogenesis than angiostatin. Despite its strong similarity with plasminogen, the role of apolipoprotein(a) in angiogenesis remains controversial, with both pro- and anti-angiogenic effects reported. In the current study, we evaluated the ability of apolipoprotein(a) to inhibit VEGF- and angiopoietin-induced tube formation in human umbilical cord endothelial cells. A 17 kringle-containing form of recombinant apo(a) (17K), corresponding to a well-characterized, physiologically-relevant form of the molecule, effectively inhibited tube formation induced by either VEGF or angiopoietin-1. Using additional recombinant apolipoprotein(a) (r-apo(a)) variants, we demonstrated that this effect was dependent on the presence of an intact lysine-binding site in kringle V domain of apo(a), but not on the presence of the functional lysine-binding site in apo(a) kringle IV type 10; sequences within in the amino-terminal half of the molecule were also not required for the inhibitory effects of apo(a). We also showed that the apo(a)-mediated inhibition tube formation could be reversed, in part by the addition of plasmin or urokinase plasminogen activator, or by removal of plasminogen from the system. Further, we demonstrated that apo(a) treated with glycosidases to remove sialic acid was significantly less effective in inhibiting tube formation. This is the first report of a functional role for the glycosylation of apo(a) although the mechanisms underlying this observation remain to be determined in the context of angiogenesis.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Angiogenesis in cancer, vascular, rheumatoid and other disease.

          J Folkman (1995)
          Recent discoveries of endogenous negative regulators of angiogenesis, thrombospondin, angiostatin and glioma-derived angiogenesis inhibitory factor, all associated with neovascularized tumours, suggest a new paradigm of tumorigenesis. It is now helpful to think of the switch to the angiogenic phenotype as a net balance of positive and negative regulators of blood vessel growth. The extent to which the negative regulators are decreased during this switch may dictate whether a primary tumour grows rapidly or slowly and whether metastases grow at all.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            cDNA sequence of human apolipoprotein(a) is homologous to plasminogen.

            Lipoprotein(a) is an LDL-like lipoprotein whose concentration in plasma is correlated with atherosclerosis. The characteristic protein component of lipoprotein(a) is apolipoprotein(a) which is disulphide-linked to apolipoprotein B-100. Sequencing of cloned human apolipoprotein(a) complementary DNA shows that it is very similar to human plasminogen. It contains a serine protease domain and two types of plasminogen-like kringle domains, one of which is present in 37 copies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis.

              Extracellular proteolysis is an absolute requirement for new blood vessel formation (angiogenesis). This review examines the role of the matrix metalloproteinase (MMP) and plasminogen activator (PA)-plasmin systems during angiogenesis. Specifically, a role for gelatinases (MMP-2, MMP-9), membrane-type 1 MMP (MMP-14), the urokinase-type PA receptor, and PA inhibitor 1 has been clearly defined in a number of model systems. The MMP and PA-plasmin systems have also been implicated in experimental vascular tumor formation, and their role during this process will be examined. Antiproteolysis, particularly in the context of angiogenesis, has become a key target in therapeutic strategies aimed at inhibiting tumor growth and other diseases associated with neovascularization.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                11 January 2013
                : 8
                : 1
                : e52287
                Affiliations
                [1 ]Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
                [2 ]Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
                University of Frankfurt - University Hospital Frankfurt, Germany
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LL MBB MLK. Performed the experiments: LL. Analyzed the data: LL MBB MLK. Wrote the paper: LL MBB MLK.

                Article
                PONE-D-12-26766
                10.1371/journal.pone.0052287
                3543409
                23326327
                0a094f0f-d43c-4451-9bc1-ac9c05282af8
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 August 2012
                : 16 November 2012
                Page count
                Pages: 12
                Funding
                This work was funded by a grant (T5916) from the Heart and Stroke Foundation of Ontario to Dr. Koschinsky. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Glycobiology
                Glycoproteins
                Proteins
                Lipoproteins
                Apolipoproteins
                Recombinant Proteins
                Cytochemistry
                Molecular Cell Biology
                Cellular Types
                Endothelial Cells
                Extracellular Matrix
                Medicine
                Cardiovascular
                Vascular Biology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article