79
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Eco-epidemiological study of an endemic Chagas disease region in northern Colombia reveals the importance of Triatoma maculata (Hemiptera: Reduviidae), dogs and Didelphis marsupialis in Trypanosoma cruzi maintenance

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In Colombia, Rhodnius prolixus and Triatoma dimidiata are the main domestic triatomine species known to transmit T. cruzi. However, there are multiple reports of T. cruzi transmission involving secondary vectors. In this work, we carried out an eco-epidemiological study on Margarita Island, located in the Caribbean region of Colombia, where Chagas disease is associated with non-domiciliated vectors.

          Methods

          To understand the transmission dynamics of Trypanosoma cruzi in this area, we designed a comprehensive, multi-faceted study including the following: (i) entomological evaluation through a community-based insect-surveillance campaign, blood meal source determination and T. cruzi infection rate estimation in triatomine insects; (ii) serological determination of T. cruzi prevalence in children under 15 years old, as well as in domestic dogs and synanthropic mammals; (iii) evaluation of T. cruzi transmission capacity in dogs and Didelphis marsupialis, and (iv) genetic characterization of T. cruzi isolates targeting spliced-leader intergene region (SL-IR) genotypes .

          Results

          Out of the 124 triatomines collected, 94 % were Triatoma maculata, and 71.6 % of them were infected with T. cruzi. Blood-meal source analysis showed that T. maculata feeds on multiple hosts, including humans and domestic dogs. Serological analysis indicated 2 of 803 children were infected, representing a prevalence of 0.25 %. The prevalence in domestic dogs was 71.6 % (171/224). Domestic dogs might not be competent reservoir hosts, as inferred from negative T. cruzi xenodiagnosis and haemoculture tests. However, 61.5 % (8/13) of D. marsupialis, the most abundant synanthropic mammal captured, were T. cruzi-positive on xenodiagnosis and haemocultures.

          Conclusions

          This study reveals the role of peridomestic T. maculata and dogs in T. cruzi persistence in this region and presents evidence that D. marsupialis are a reservoir mediating peridomestic-zoonotic cycles. This picture reflects the complexity of the transmission dynamics of T. cruzi in an endemic area with non-domiciliated vectors where active human infection exists. There is an ongoing need to control peridomestic T. maculata populations and to implement continuous reservoir surveillance strategies with community participation.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13071-015-1100-2) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of environmental change on emerging parasitic diseases.

          Ecological disturbances exert an influence on the emergence and proliferation of malaria and zoonotic parasitic diseases, including, Leishmaniasis, cryptosporidiosis, giardiasis, trypanosomiasis, schistosomiasis, filariasis, onchocerciasis, and loiasis. Each environmental change, whether occurring as a natural phenomenon or through human intervention, changes the ecological balance and context within which disease hosts or vectors and parasites breed, develop, and transmit disease. Each species occupies a particular ecological niche and vector species sub-populations are distinct behaviourally and genetically as they adapt to man-made environments. Most zoonotic parasites display three distinct life cycles: sylvatic, zoonotic, and anthroponotic. In adapting to changed environmental conditions, including reduced non-human population and increased human population, some vectors display conversion from a primarily zoophyllic to primarily anthrophyllic orientation. Deforestation and ensuing changes in landuse, human settlement, commercial development, road construction, water control systems (dams, canals, irrigation systems, reservoirs), and climate, singly, and in combination have been accompanied by global increases in morbidity and mortality from emergent parasitic disease. The replacement of forests with crop farming, ranching, and raising small animals can create supportive habitats for parasites and their host vectors. When the land use of deforested areas changes, the pattern of human settlement is altered and habitat fragmentation may provide opportunities for exchange and transmission of parasites to the heretofore uninfected humans. Construction of water control projects can lead to shifts in such vector populations as snails and mosquitoes and their parasites. Construction of roads in previously inaccessible forested areas can lead to erosion, and stagnant ponds by blocking the flow of streams when the water rises during the rainy season. The combined effects of environmentally detrimental changes in local land use and alterations in global climate disrupt the natural ecosystem and can increase the risk of transmission of parasitic diseases to the human population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA markers define two major phylogenetic lineages of Trypanosoma cruzi.

            R. Souto (1996)
            Parasitic protozoa within the taxon Trypanosoma cruzi are considered to be derived from multiple clonal lineages, and show broad genetic diversity as a result of propagation with little or no genetic exchange. We have analyzed a wide sample of T. cruzi isolates from vertebrate and invertebrate hosts by PCR amplification of a ribosomal RNA gene sequence, a mini-exon gene sequence and random amplified polymorphic DNA (RAPD). Amplification of the distinct rDNA and mini-exon gene sequences indicated a dimorphism within both of the tandemly-repeated genes: 125 or 110 bp products for rDNA and 300 or 350 bp products for the mini-exon. Within individual isolates, one of three associations was observed: the 125 bp rDNA product with the 300 bp mini-exon product (defined as group 1), the 110 bp rDNA product with the 350 bp mini-exon product (defined as group 2) and the presence of both rDNA amplification products with the mini-exon group 1 product (group 1/2). The RAPD analysis showed variability between individual isolates, however, tree analysis clearly indicated the presence of two major branches. Interestingly, the rDNA/mini-exon group 2 isolates correlated precisely with one branch of the RAPD-derived tree; group 1 and group 1/2 isolates correlated with the other branch. Our studies show a clear division of T. cruzi into two major lineages presenting a high phylogenetic divergence. Hypotheses are discussed to explain the origin of the two lineages as well as isolates that are hybrid for group 1 and 2 rDNA markers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Disease, habitat fragmentation and conservation.

              Habitat loss and the resultant fragmentation of remaining habitat is the primary cause of loss of biological diversity. How do these processes affect the dynamics of parasites and pathogens? Hess has provided some important insights into this problem using metapopulation models for pathogens that exhibit 'S-I' dynamics; for example, pathogens such as rabies in which the host population may be divided into susceptible and infected individuals. A major assumption of Hess's models is that infected patches become extinct, rather than recovering and becoming resistant to future infections. In this paper, we build upon this framework in two different ways: first, we examine the consequences of including patches that are resistant to infection; second, we examine the consequences of including a second species of host that can act as a reservoir for the pathogen. Both of these effects are likely to be important from a conservation perspective. The results of both sets of analysis indicate that the benefits of corridors and other connections that allow species to disperse through the landscape far outweigh the possible risks of increased pathogen transmission. Even in the commonest case, where harmful pathogens are maintained by a common reservoir host, increased landscape connectance still allows greater coexistence and persistence of a threatened or endangered host.
                Bookmark

                Author and article information

                Contributors
                omarcantillo@gmail.com
                edilsongarcesq@gmail.com
                amgomezpa@gmail.com
                luisgonatodes@hotmail.com
                andre.pereira@ioc.fiocruz.br
                pvm3@cdc.gov
                jansen@ioc.fiocruz.br
                +57-4-2196520 , omar.triana@udea.edu.co
                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central (London )
                1756-3305
                22 September 2015
                22 September 2015
                2015
                : 8
                : 482
                Affiliations
                [ ]Grupo BCEI, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia
                [ ]Unidad de Entomología Médica, Secretaría de Salud del Departamento de Bolívar, Cartagena, Colombia
                [ ]Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, FIOCRUZ, Av. Brazil 4365, CEP 21040-360 Rio de Janeiro, RJ Brazil
                [ ]Centers for Disease Control and Prevention (CDC), Division of Parasitic Diseases and Malaria, Entomology Branch, Atlanta, GA USA
                Article
                1100
                10.1186/s13071-015-1100-2
                4580378
                0a14e5df-ba0b-47cc-b25e-8e48542c8321
                © Cantillo-Barraza et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 4 May 2015
                : 16 September 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Parasitology
                colombia,risk factors for chagas disease,trypanosoma cruzi,seroprevalence,dogs,non-domiciliated vectors

                Comments

                Comment on this article