5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Planning quality and delivery efficiency of sMLC delivered IMRT treatment of oropharyngeal cancers evaluated by RTOG H‐0022 dosimetric criteria

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The time required to deliver intensity‐modulated radiation therapy (IMRT) treatments can be significantly longer than conventional treatments, especially for the segmented multileaf collimator (sMLC) delivery system with a large record and verification (R&V) overhead. In this work, we evaluate the impact of the number of intensity‐modulated beams (IMBs) and the number of intensity levels (ILs) on the quality and delivery efficiency of IMRT plans, generated by the Corvus planning system for sMLC delivery on a Siemens LINAC with the Lantis R&V system. Detailed studies were performed for three image data sets of previously treated oropharyngeal patients. Treatment plans for patient 1 were developed using 5, 7, 9, or 15 evenly spaced axial IMBs as well as one with 7 axial IMBs whose directions were user‐selected, each using ILs of 3, 5, 10, or 20. For patients 2 and 3, plans with 15 IMBs and 20 ILs were not attempted. A total of 42 plans were developed using three oropharyngeal cancer CT image data sets. Plan quality was evaluated by assessing compliance with the Radiation Therapy Oncology Group (RTOG) H‐0022 protocol criteria and the physician's clinical judgment. Plan efficiency was accessed by the number of segments of each plan. We found that for our treatment‐planning and delivery system, an IMRT plan that uses a moderate number of IMBs and ILs, such as 7 or 9 IMBs with 3 or 5 ILs, would appear to be the optimal approach when both quality of the plan and delivery efficiency are considered. Based on this study, we have routinely used 9 IMBs with 3 ILs or 7 IMBs with 5 ILs for head and neck patients. A retrospective comparison indicates that delivery efficiency is improved on the order of 30% compared to plans generated with 9 IMBs with 5 ILs.

          PACS number: 87.53.Tf

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Intensity-modulated radiotherapy: current status and issues of interest.

          (2001)
          To develop and disseminate a report aimed primarily at practicing radiation oncology physicians and medical physicists that describes the current state-of-the-art of intensity-modulated radiotherapy (IMRT). Those areas needing further research and development are identified by category and recommendations are given, which should also be of interest to IMRT equipment manufacturers and research funding agencies. The National Cancer Institute formed a Collaborative Working Group of experts in IMRT to develop consensus guidelines and recommendations for implementation of IMRT and for further research through a critical analysis of the published data supplemented by clinical experience. A glossary of the words and phrases currently used in IMRT is given in the. Recommendations for new terminology are given where clarification is needed. IMRT, an advanced form of external beam irradiation, is a type of three-dimensional conformal radiotherapy (3D-CRT). It represents one of the most important technical advances in RT since the advent of the medical linear accelerator. 3D-CRT/IMRT is not just an add-on to the current radiation oncology process; it represents a radical change in practice, particularly for the radiation oncologist. For example, 3D-CRT/IMRT requires the use of 3D treatment planning capabilities, such as defining target volumes and organs at risk in three dimensions by drawing contours on cross-sectional images (i.e., CT, MRI) on a slice-by-slice basis as opposed to drawing beam portals on a simulator radiograph. In addition, IMRT requires that the physician clearly and quantitatively define the treatment objectives. Currently, most IMRT approaches will increase the time and effort required by physicians, medical physicists, dosimetrists, and radiation therapists, because IMRT planning and delivery systems are not yet robust enough to provide totally automated solutions for all disease sites. Considerable research is needed to model the clinical outcomes to allow truly automated solutions. Current IMRT delivery systems are essentially first-generation systems, and no single method stands out as the ultimate technique. The instrumentation and methods used for IMRT quality assurance procedures and testing are not yet well established. In addition, many fundamental questions regarding IMRT are still unanswered. For example, the radiobiologic consequences of altered time-dose fractionation are not completely understood. Also, because there may be a much greater ability to trade off dose heterogeneity in the target vs. avoidance of normal critical structures with IMRT compared with traditional RT techniques, conventional radiation oncology planning principles are challenged. All in all, this new process of planning and treatment delivery has significant potential for improving the therapeutic ratio and reducing toxicity. Also, although inefficient currently, it is expected that IMRT, when fully developed, will improve the overall efficiency with which external beam RT can be planned and delivered, and thus will potentially lower costs. Recommendations in the areas pertinent to IMRT, including dose-calculation algorithms, acceptance testing, commissioning and quality assurance, facility planning and radiation safety, and target volume and dose specification, are presented. Several of the areas in which future research and development are needed are also indicated. These broad recommendations are intended to be both technical and advisory in nature, but the ultimate responsibility for clinical decisions pertaining to the implementation and use of IMRT rests with the radiation oncologist and radiation oncology physicist. This is an evolving field, and modifications of these recommendations are expected as new technology and data become available.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Impact of prolonged fraction delivery times on tumor control: a note of caution for intensity-modulated radiation therapy (IMRT).

            Intensity-modulated radiation therapy (IMRT) allows greater dose conformity to the tumor target. However, IMRT, especially static delivery, usually requires more time to deliver a dose fraction than conventional external beam radiotherapy (EBRT). The purpose of this work is to explore the potential impact of such prolonged fraction delivery times on treatment outcome. The generalized linear-quadratic (LQ) model, which accounts for sublethal damage repair and clonogen proliferation, was used to calculate the cell-killing efficiency of various simulated and clinical IMRT plans. LQ parameters derived from compiled clinical data for prostate cancer (alpha = 0.15 Gy(-1), alpha/beta = 3.1 Gy, and a 16-min repair half-time) were used to compute changes in the equivalent uniform dose (EUD) and tumor control probability (TCP) due to prolonged delivery time of IMRT as compared with conventional EBRT. EUD and TCP calculations were also evaluated for a wide range of radiosensitivity parameters. The effects of fraction delivery times ranging from 0 to 45 min on cell killing were studied. Our calculations indicate that fraction delivery times in the range of 15-45 min may significantly decrease cell killing. For a prescription dose of 81 Gy in 1.8 Gy fractions, the EUD for prostate cancer decreases from 78 Gy for a conventional EBRT to 69 Gy for an IMRT with a fraction delivery time of 30 min. The values of EUD are sensitive to the alpha/beta ratio, the repair half-time, and the fraction delivery time. The instantaneous dose-rate, beam-on time, number of leaf shapes (segments), and leaf-sequencing patterns given the same overall fraction delivery time were found to have negligible effect on cell killing. The total time to deliver a single fraction may have a significant impact on IMRT treatment outcome for tumors with a low alpha/beta ratio and a short repair half-time, such as prostate cancer. These effects, if confirmed by clinical studies, should be considered in designing IMRT treatments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intensity-modulated radiation therapy for head and neck cancer: emphasis on the selection and delineation of the targets.

              The head and neck contain many critical, noninvolved structures in close vicinity to the targets. The tightly conformal doses produced by intensity-modulated radiation therapy (IMRT), and the lack of internal organ motion in the head and neck, provide the potential for organ sparing and improved tumor irradiation. Many studies of treatment planning for head and neck cancer have demonstrated the dosimetric superiority of IMRT over conventional techniques in these respects. The initial results of clinical studies demonstrate reduced xerostomia. They suggest an improvement in tumor control, which needs to be verified in larger studies and longer follow-up. Critical issues for successful outcome of head and neck IMRT are accurate selection of the neck lymph nodes that require adjuvant treatment, and accurate delineation on the planning computed tomography (CT) of the lymph-node bearing areas and subclinical disease adjoining the gross tumor. This review emphasizes these topics and provides some guidelines. Copyright 2002, Elsevier Science (USA). All rights reserved.
                Bookmark

                Author and article information

                Contributors
                xrzhu@mdanderson.org
                Journal
                J Appl Clin Med Phys
                J Appl Clin Med Phys
                10.1002/(ISSN)1526-9914
                ACM2
                Journal of Applied Clinical Medical Physics
                John Wiley and Sons Inc. (Hoboken )
                1526-9914
                24 November 2004
                Fall 2004
                : 5
                : 4 ( doiID: 10.1002/acm2.2004.5.issue-4 )
                : 80-95
                Affiliations
                [ 1 ] Department of Radiation Oncology Medical College of Wisconsin Milwaukee Wisconsin U.S.A.
                [ 2 ]Present address: Department of Radiation Physics, Box 94 The University of Texas M. D. Anderson Cancer Center 1515 Holcombe Blvd. Houston TX 77030 U.S.A.
                Author notes
                [†]

                Part of the results were presented at the ASTRO Annual Meeting, New Orleans, LA, 2002.

                Article
                ACM20080
                10.1120/jacmp.v5i4.2014
                5723523
                15738923
                0a15ee83-9d7f-4f13-81ca-f681901b9764
                © 2004 The Authors.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 June 2004
                : 14 September 2004
                Page count
                Figures: 8, Tables: 20, References: 26, Pages: 16, Words: 7031
                Categories
                Radiation Oncology Physics
                Radiation Oncology Physics
                Custom metadata
                2.0
                acm20080
                Fall 2004
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.2.5 mode:remove_FC converted:16.11.2017

                imrt,head and neck,planning quality,delivery efficiency
                imrt, head and neck, planning quality, delivery efficiency

                Comments

                Comment on this article