21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bonding and Anti-bonding Modes of Plasmon Coupling Effects in TiO 2-Ag Core-shell Dimers

      research-article
      1 , 2 , a , 2
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bonding and anti-bonding modes of plasmon coupling effects are numerically investigated in TiO 2-Ag core-shell nano dimers. First, splitting phenomena of the coupled anti-bonding modes are observed under the longitudinal polarization when the distance between the monomers decreases to a certain level. Second, one of the split resonance modes is identified to be formed by the dipole anti-bonding mode of the monomers from charge density distribution patterns. Those split modes have similar redshift behaviors as the coupled dipole bonding modes in the same situations. Furthermore, the intensities of those anti-bonding modes weaken with decreasing distance between the monomers, because of the interaction of the induced dipole moment in the monomers and the charge distribution variation on the facing surfaces of the gap by the coulomb attraction. Other split bands are the higher-order mode (octupole-like or triakontadipole-like), which do not have obvious peak-shift behavior, and the intensities have very little attenuation with decreasing distance. Finally, the coupling of the bonding and anti-bonding modes under the longitudinal polarization is symmetric (bonding).

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Quantum description of the plasmon resonances of a nanoparticle dimer.

          Using time-dependent density functional theory, we present a fully quantum mechanical investigation of the plasmon resonances in a nanoparticle dimer as a function of interparticle separation. We show that for dimer separations below 1 nm quantum mechanical effects, such as electron tunneling across the dimer junction and screening, significantly modify the optical response and drastically reduce the electromagnetic field enhancements relative to classical predictions. For larger separations, the dimer plasmons are well described by classical electromagnetic theory.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plasmon resonances of a gold nanostar.

            Using the finite-difference time-domain method, we show that the plasmons of a nanostar result from hybridization of plasmons of the core and tips of the nanoparticle. The nanostar core serves as a nanoscale antenna, dramatically increasing the excitation cross section and the electromagnetic field enhancements of the tip plasmons. Our analysis demonstrates that the plasmon hybridization picture can be combined with numerical approaches to interpret the physical origin of the plasmons of highly complex nanostructures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.

              The shape anisotropy of nanorods gives rise to two distinct orientational modes by which nanorods can be assembled, i.e., end-to-end and side-by-side, analogous to the well-known H and J aggregation in organic chromophores. Optical absorption spectra of gold nanorods have earlier been observed to show a red-shift of the longitudinal plasmon band for the end-to-end linkage of nanorods, resulting from the plasmon coupling between neighboring nanoparticles, similar to the assembly of gold nanospheres. We observe, however, that side-by-side linkage of nanorods in solution shows a blue-shift of the longitudinal plasmon band and a red-shift of the transverse plasmon band. Optical spectra calculated using the discrete dipole approximation method were used to simulate plasmon coupling in assembled nanorod dimers. The longitudinal plasmon band is found to shift to lower energies for end-to-end assembly, but a shift to higher energies is found for the side-by-side orientation, in agreement with the optical absorption experiments. The strength of plasmon coupling was seen to increase with decreasing internanorod distance and an increase in the number of interacting nanorods. For both side-by-side and end-to-end assemblies, the strength of the longitudinal plasmon coupling increases with increasing nanorod aspect ratio as a result of the increasing dipole moment of the longitudinal plasmon. For both the side-by-side and end-to-end orientation, the simulation of a dimer of nanorods having dissimilar aspect ratios showed a longitudinal plasmon resonance with both a blue-shifted and a red-shifted component, as a result of symmetry breaking. A similar result is observed for a pair of similar aspect ratio nanorods assembled in a nonparallel orientation. The internanorod plasmon coupling scheme concluded from the experimental results and simulations is found to be qualitatively consistent with the molecular exciton coupling theory, which has been used to describe the optical spectra of H and J aggregates of organic molecules. The coupled nanorod plasmons are also suggested to be electromagnetic analogues of molecular orbitals. Investigation of the plasmon coupling in assembled nanorods is important for the characterization of optical excitations and plasmon propagation in these nanostructures. The surface plasmon resonance shift resulting from nanorod assembly also offers a promising alternative for analyte-sensing assays.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                14 January 2016
                2016
                : 6
                : 19433
                Affiliations
                [1 ]Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing , Beijing, China, 100083
                [2 ]Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee , Knoxville, TN, 37996
                Author notes
                Article
                srep19433
                10.1038/srep19433
                4725898
                26763719
                0a2ad4af-ae9d-46dc-a5ad-92e8873f575f
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 27 March 2015
                : 14 December 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article