79
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Surfactant alteration and replacement in acute respiratory distress syndrome

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The acute respiratory distress syndrome (ARDS) is a frequent, life-threatening disease in which a marked increase in alveolar surface tension has been repeatedly observed. It is caused by factors including a lack of surface-active compounds, changes in the phospholipid, fatty acid, neutral lipid, and surfactant apoprotein composition, imbalance of the extracellular surfactant subtype distribution, inhibition of surfactant function by plasma protein leakage, incorporation of surfactant phospholipids and apoproteins into polymerizing fibrin, and damage/inhibition of surfactant compounds by inflammatory mediators. There is now good evidence that these surfactant abnormalities promote alveolar instability and collapse and, consequently, loss of compliance and the profound gas exchange abnormalities seen in ARDS. An acute improvement of gas exchange properties together with a far-reaching restoration of surfactant properties was encountered in recently performed pilot studies. Here we summarize what is known about the kind and severity of surfactant changes occuring in ARDS, the contribution of these changes to lung failure, and the role of surfactant administration for therapy of ARDS.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical risks for development of the acute respiratory distress syndrome.

          To further understanding of the epidemiology of acute respiratory distress syndrome (ARDS), we prospectively identified 695 patients admitted to our intensive care units from 1983 through 1985 meeting criteria for seven clinical risks, and followed them for development of ARDS and eventual outcome. ARDS occurred in 179 of the 695 patients (26%). The highest incidence of ARDS occurred in patients with sepsis syndrome (75 of 176; 43%) and those with multiple emergency transfusions (> or = 15 units in 24 h) (46 of 115; 40%). Of patients with multiple trauma, 69 of 271 (25%) developed ARDS. If any two clinical risks for trauma were present, the incidence of ARDS was 23 of 57, or 40%. During the study period, we identified 48 patients with ARDS who did not have one of the defined clinical risks, yielding a sensitivity of 79% (179 of 227). Secondary factors associated with increased risk for ARDS in clinical risk subgroups include an elevated Acute Physiologic and Chronic Health Evaluation II (APACHE II) score in patients with sepsis and increased APACHE II and Injury Severity Scores (ISS) in trauma victims. Mortality was threefold higher when ARDS was present (62%) than among patients with clinical risks who did not develop ARDS (19%; p < 0.05). The difference in mortality if ARDS developed was particularly striking in patients with trauma (56% versus 13%), but less in those with sepsis (69% versus 49%). The mortality data should be interpreted with caution, since the fatality rate in ARDS patients appears to have decreased in our institution from the time that these data were collected.(ABSTRACT TRUNCATED AT 250 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Surfactant proteins a and d and pulmonary host defense.

            The lung collectins, SP-A and SP-D, are important components of the innate immune response to microbial challenge and participate in other aspects of immune and inflammatory regulation within the lung. Both proteins bind to surface structures expressed by a wide variety of microorganisms and have the capacity to modulate multiple leukocyte functions, including the enhanced internalization and killing of certain microorganisms in vitro. In addition, transgenic mice with deficiencies in SP-A and SP-D show defective or altered responses to challenge with bacterial, fungal, and viral microorganisms and to bacterial lipopolysaccharides in vivo. Thus collectins could play particularly important roles in settings of inadequate or impaired specific immunity, and acquired alterations in the levels of active collectins within the airspaces and distal airways may increase susceptibility to infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS.

              The goal of this study was to determine the changes that occur in surfactant-associated proteins in bronchoalveolar lavage fluid (BAL) and serum of patients at risk for ARDS and during the course of ARDS. We found that the concentrations of SP-A and SP-B were low in the BAL of patients at risk for ARDS before the onset of clinically defined lung injury, whereas the concentration of SP-D was normal. In patients with established ARDS, BAL SP-A and SP-B concentrations were low during the entire 14-d observation period, but the median SP-D concentrations remained in the normal range. Immunoreactive SP-A and SP-D were not increased in the serum of patients at risk for ARDS, but both increased after the onset of ARDS to a maximum on Day 3 and remained elevated for as long as 14 d. The BAL SP-A concentrations were significantly lower in at-risk patients who developed ARDS, and no patient with a BAL SP-A concentration greater than 1.2 microg/ml developed ARDS. On Days 1 and 3 of ARDS, the BAL SP-D concentration was significantly lower in patients who died, and the BAL SP-D concentration was significantly related to the PI(O(2))/FI(O(2)) ratio. Thus, surfactant protein abnormalities occur before and after the onset of ARDS, and the responses of SP-A, SP-B, and SP-D differ in important ways. The BAL SP-A and SP-D measurements can be used to classify patients as high or low risk for progression to ARDS and/or death after the onset of ARDS. Strategies to increase these surfactant proteins in the lungs of patients with ARDS could be useful to modify the onset or the course of ARDS.
                Bookmark

                Author and article information

                Journal
                Respir Res
                Respiratory Research
                BioMed Central
                1465-9921
                1465-993X
                2001
                12 October 2001
                : 2
                : 6
                : 353-364
                Affiliations
                [1 ]Department of Internal Medicine, Justus-Liebig-University Gieβen, Germany
                Article
                rr86
                10.1186/rr86
                64803
                11737935
                0a2b63d7-6b88-47e7-9453-7675e7230ece
                Copyright © 2001 BioMed Central Ltd
                History
                : 4 May 2001
                : 12 July 2001
                Categories
                Review

                Respiratory medicine
                acute lung injury,ards,surfactant replacement,pulmonary surfactant
                Respiratory medicine
                acute lung injury, ards, surfactant replacement, pulmonary surfactant

                Comments

                Comment on this article