11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Bayesian inference of cetacean phylogeny based on mitochondrial genomes

      Biologia
      Walter de Gruyter GmbH

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The phylogeny of Cetacea (whales, dolphins, porpoises) has long attracted the interests of biologists and has been investigated by many researchers based on different datasets. However, some phylogenetic relationships within Cetacea still remain controversial. In this study, Bayesian analyses were performed to infer the phylogeny of 25 representative species within Cetacea based on their mitochondrial genomes for the first time. The analyses recovered the clades resolved by the previous studies and strongly supported most of the current cetacean classifications, such as the monophyly of Odontoceti (toothed whales) and Mysticeti (baleen whales). The analyses provided a reliable and comprehensive phylogeny of Cetacea which can provide a foundation for further exploration of cetacean ecology, conservation and biology. The results also showed that: (i) the mitochondrial genomes were very informative for inferring phylogeny of Cetacea; and (ii) the Bayesian analyses outperformed other phylogenetic methods on inferring mitochondrial genome-based phylogeny of Cetacea.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          GenBank

          GenBank (R) is a comprehensive database that contains publicly available nucleotide sequences for more than 260 000 named organisms, obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects. Most submissions are made using the web-based BankIt or standalone Sequin programs and accession numbers are assigned by GenBank staff upon receipt. Daily data exchange with the European Molecular Biology Laboratory Nucleotide Sequence Database in Europe and the DNA Data Bank of Japan ensures worldwide coverage. GenBank is accessible through NCBI's retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, begin at the NCBI Homepage: www.ncbi.nlm.nih.gov
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Model of amino acid substitution in proteins encoded by mitochondrial DNA.

            Mitochondrial DNA (mtDNA) sequences are widely used for inferring the phylogenetic relationships among species. Clearly, the assumed model of nucleotide or amino acid substitution used should be as realistic as possible. Dependence among neighboring nucleotides in a codon complicates modeling of nucleotide substitutions in protein-encoding genes. It seems preferable to model amino acid substitution rather than nucleotide substitution. Therefore, we present a transition probability matrix of the general reversible Markov model of amino acid substitution for mtDNA-encoded proteins. The matrix is estimated by the maximum likelihood (ML) method from the complete sequence data of mtDNA from 20 vertebrate species. This matrix represents the substitution pattern of the mtDNA-encoded proteins and shows some differences from the matrix estimated from the nuclear-encoded proteins. The use of this matrix would be recommended in inferring trees from mtDNA-encoded protein sequences by the ML method.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phylogeny estimation: traditional and Bayesian approaches.

              The construction of evolutionary trees is now a standard part of exploratory sequence analysis. Bayesian methods for estimating trees have recently been proposed as a faster method of incorporating the power of complex statistical models into the process. Researchers who rely on comparative analyses need to understand the theoretical and practical motivations that underlie these new techniques, and how they differ from previous methods. The ability of the new approaches to address previously intractable questions is making phylogenetic analysis an essential tool in an increasing number of areas of genetic research.
                Bookmark

                Author and article information

                Journal
                Biologia
                Walter de Gruyter GmbH
                1336-9563
                0006-3088
                January 1 2009
                January 1 2009
                : 64
                : 4
                Article
                10.2478/s11756-009-0121-8
                0a33ac61-7950-45e2-9aa8-8e987deaa72c
                © 2009
                History

                Comments

                Comment on this article