8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Identification of pathways required for sustained pain-associated coping behaviors

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Animals and humans display two types of responses to noxious stimuli. The first includes reflexive-defensive responses to prevent or limit injury. A well-known example is the quick withdrawal of one’s hand touching a hot object. When the first-line response fails to prevent tissue damage (e.g., a finger is burnt), the resulting pain invokes a second-line coping response, such as licking the injured area to soothe suffering. However, the underlying neural circuits driving these two strings of behaviors remain poorly understood. Here we show that in mice, spinal neurons marked by coexpression of Tુ Cre and Lbx1 Flpo, called Tac1 Lbx1, drive pain-related coping responses. Ablation of Tac1 Lbx1 neurons led to loss of persistent licking and conditioned aversion evoked by stimuli that produce sustained pain in humans, including skin pinching and burn injury, without affecting all tested reflexive-defensive reactions. This selective indifference to sustained pain resembles the phenotype seen in humans with lesions of medial thalamic nuclei 13 . Consistently, spinal Tac1 lineage neurons are connected to medial thalamic nuclei, via direct projections and indirect routes through the superior lateral parabrachial nuclei. Furthermore, the anatomical and functional segregation observed at the spinal levels is applied to primary sensory neurons. For example, in response to noxious mechanical stimuli, Mrgprd + and TRPV1 + nociceptors are required to elicit reflexive and coping responses, respectively. Our studies therefore reveal a fundamental subdivision within the cutaneous somatosensory system. The implications for translational success from preclinical pain studies will be discussed.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          A mesoscale connectome of the mouse brain.

          Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents.

            TRPA1 is an excitatory ion channel targeted by pungent irritants from mustard and garlic. TRPA1 has been proposed to function in diverse sensory processes, including thermal (cold) nociception, hearing, and inflammatory pain. Using TRPA1-deficient mice, we now show that this channel is the sole target through which mustard oil and garlic activate primary afferent nociceptors to produce inflammatory pain. TRPA1 is also targeted by environmental irritants, such as acrolein, that account for toxic and inflammatory actions of tear gas, vehicle exhaust, and metabolic byproducts of chemotherapeutic agents. TRPA1-deficient mice display normal cold sensitivity and unimpaired auditory function, suggesting that this channel is not required for the initial detection of noxious cold or sound. However, TRPA1-deficient mice exhibit pronounced deficits in bradykinin-evoked nociceptor excitation and pain hypersensitivity. Thus, TRPA1 is an important component of the transduction machinery through which environmental irritants and endogenous proalgesic agents depolarize nociceptors to elicit inflammatory pain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures.

              Mammals detect temperature with specialized neurons in the peripheral nervous system. Four TRPV-class channels have been implicated in sensing heat, and one TRPM-class channel in sensing cold. The combined range of temperatures that activate these channels covers a majority of the relevant physiological spectrum sensed by most mammals, with a significant gap in the noxious cold range. Here, we describe the characterization of ANKTM1, a cold-activated channel with a lower activation temperature compared to the cold and menthol receptor, TRPM8. ANKTM1 is a distant family member of TRP channels with very little amino acid similarity to TRPM8. It is found in a subset of nociceptive sensory neurons where it is coexpressed with TRPV1/VR1 (the capsaicin/heat receptor) but not TRPM8. Consistent with the expression of ANKTM1, we identify noxious cold-sensitive sensory neurons that also respond to capsaicin but not to menthol.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                13 November 2018
                10 December 2018
                January 2019
                10 June 2019
                : 565
                : 7737
                : 86-90
                Affiliations
                [1 ]Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
                [2 ]Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
                [3 ]Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut.
                [4 ]Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine; Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, 200032, China.
                [5 ]Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu 241002, China.
                [6 ]Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
                [7 ]Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
                Author notes
                [†]

                Contributed equally to this study

                Author contributions: T.H., S.H.L., N.M.M., Yan Z. and Ying Z. performed the experiments and data analyses, Q.M., R.H.L. and M.G supervised the whole study, and T.H., S.H.L., Q.M., R.H.L. and M.G. wrote the manuscript.

                [* ] Corresponding author. Qiufu_Ma@ 123456dfci.harvard.edu
                Article
                NIHMS1511763
                10.1038/s41586-018-0793-8
                6461409
                30532001
                0a360db6-e433-4a02-85db-6899c8ba172b

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article