8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Elevated H2AX Phosphorylation Observed with kINPen Plasma Treatment Is Not Caused by ROS-Mediated DNA Damage but Is the Consequence of Apoptosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phosphorylated histone 2AX ( γH2AX) is a long-standing marker for DNA double-strand breaks (DSBs) from ionizing radiation in the field of radiobiology. This led to the perception of γH2AX being a general marker of direct DNA damage with the treatment of other agents such as low-dose exogenous ROS that unlikely act on cellular DNA directly. Cold physical plasma confers biomedical effects majorly via release of reactive oxygen and nitrogen species (ROS). In vitro, increase of γH2AX has often been observed with plasma treatment, leading to the conclusion that DNA damage is a direct consequence of plasma exposure. However, increase in γH2AX also occurs during apoptosis, which is often observed with plasma treatment as well. Moreover, it must be questioned if plasma-derived ROS can reach into the nucleus and still be reactive enough to damage DNA directly. We investigated γH2AX induction in a lymphocyte cell line upon ROS exposure (plasma, hydrogen peroxide, or hypochlorous acid) or UV-B light. Cytotoxicity and γH2AX induction was abrogated by the use of antioxidants with all types of ROS treatment but not UV radiation. H2AX phosphorylation levels were overall independent of analyzing either all nucleated cells or segmenting γH2AX phosphorylation for each cell cycle phase. SB202190 (p38-MAPK inhibitor) and Z-VAD-FMK (pan-caspase inhibitor) significantly inhibited γH2AX induction upon ROS but not UV treatment. Finally, and despite γH2AX induction, UV but not plasma treatment led to significantly increased micronucleus formation, which is a functional read-out of genotoxic DNA DSBs. We conclude that plasma-mediated and low-ROS γH2AX induction depends on caspase activation and hence is not the cause but consequence of apoptosis induction. Moreover, we could not identify lasting mutagenic effects with plasma treatment despite phosphorylation of H2AX.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          gammaH2AX: a sensitive molecular marker of DNA damage and repair.

          Phosphorylation of the Ser-139 residue of the histone variant H2AX, forming gammaH2AX, is an early cellular response to the induction of DNA double-strand breaks. Detection of this phosphorylation event has emerged as a highly specific and sensitive molecular marker for monitoring DNA damage initiation and resolution. Further, analysis of gammaH2AX foci has numerous other applications including, but not limited to, cancer and aging research. Quantitation of gammaH2AX foci has also been applied as a useful tool for the evaluation of the efficacy of various developmental drugs, particularly, radiation modifying compounds. This review focuses on the current status of gammaH2AX as a marker of DNA damage and repair in the context of ionizing radiation. Although the emphasis is on gamma-radiation-induced gammaH2AX foci, the effects of other genotoxic insults including exposure to ultraviolet rays, oxidative stress and chemical agents are also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks.

            Histone H2AX is rapidly phosphorylated in the chromatin micro-environment surrounding a DNA double-strand break (DSB). Although H2AX deficiency is not detrimental to life, H2AX is required for the accumulation of numerous essential proteins into irradiation induced foci (IRIF). However, the relationship between IRIF formation, H2AX phosphorylation (gamma-H2AX) and the detection of DNA damage is unclear. Here, we show that the migration of repair and signalling proteins to DSBs is not abrogated in H2AX(-/-) cells, or in H2AX-deficient cells that have been reconstituted with H2AX mutants that eliminate phosphorylation. Despite their initial recruitment to DSBs, numerous factors, including Nbs1, 53BP1 and Brca1, subsequently fail to form IRIF. We propose that gamma-H2AX does not constitute the primary signal required for the redistribution of repair complexes to damaged chromatin, but may function to concentrate proteins in the vicinity of DNA lesions. The differential requirements for factor recruitment to DSBs and sequestration into IRIF may explain why essential regulatory pathways controlling the ability of cells to respond to DNA damage are not abolished in the absence of H2AX.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ROS-mediated lipid peroxidation and RES-activated signaling.

              Nonenzymatic lipid oxidation is usually viewed as deleterious. But if this is the case, then why does it occur so frequently in cells? Here we review the mechanisms of membrane peroxidation and examine the genesis of reactive electrophile species (RES). Recent evidence suggests that during stress, both lipid peroxidation and RES generation can benefit cells. New results from genetic approaches support a model in which entire membranes can act as supramolecular sinks for singlet oxygen, the predominant reactive oxygen species (ROS) in plastids. RES reprogram gene expression through a class II TGA transcription factor module as well as other, unknown signaling pathways. We propose a framework to explain how RES signaling promotes cell "REScue" by stimulating the expression of genes encoding detoxification functions, cell cycle regulators, and chaperones. The majority of the known biological activities of oxygenated lipids (oxylipins) in plants are mediated either by jasmonate perception or through RES signaling networks.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2019
                19 September 2019
                : 2019
                : 8535163
                Affiliations
                1ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
                2Department of Urology, Greifswald University Medical Center, Greifswald, Germany
                3Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Greifswald, Germany
                Author notes

                Guest Editor: Rizwan Wahab

                Author information
                https://orcid.org/0000-0002-8773-8862
                https://orcid.org/0000-0001-5217-0683
                https://orcid.org/0000-0003-4129-8854
                Article
                10.1155/2019/8535163
                6770374
                0a380b84-9b59-4979-837b-54471c8ced4c
                Copyright © 2019 Sander Bekeschus et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 May 2019
                : 23 July 2019
                : 26 August 2019
                Funding
                Funded by: Gerhard-Domagk Foundation
                Funded by: Bundesministerium für Bildung und Forschung
                Award ID: 03Z22DN12
                Award ID: 03Z22DN11
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article