24
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      The APC waiver has been extended to also apply to manuscripts submitted until March 31, 2024.

      To submit to the journal, please click here.

      • Record: found
      • Abstract: found
      • Article: found

      Administration of a nondepleting anti-CD25 monoclonal antibody reduces disease severity in mice infected with Trypanosoma cruzi

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The role of CD25+ regulatory T cells during the course of Trypanosoma cruzi infection has been previously analyzed, and the bulk of results have shown a limited role for this T cell subpopulation. In this study, we have used an IgM, nondepleting monoclonal antibody (mAb) aiming at blocking interleukin (IL)-2 activity on CD25+ T cells. The administration of this antibody 10 days before infection increased the resistance of outbred Swiss mice to the Colombian strain of T. cruzi. Anti-CD25-treated mice had lower parasitemia and augmented numbers of effector memory T cells. In addition, these animals showed higher numbers of splenic T cells secreting IFN-γ and TNF-α, both cytokines described to be involved in the resistance to T. cruzi infection. The same treatment also increased the numbers of splenic T cells that produced homeostatic and regulatory cytokines, such as IL-2 and IL-10, and CD4+CD25+ T cells. The administration of nondepleting anti-CD25 mAb at the beginning of the chronic phase, when parasites were cleared from the blood, halted the inflammatory process in the heart, without any signs of infection reactivation. These results indicate that nondepleting anti-CD25 monoclonal antibodies may be useful to treat chronic Chagas’ disease.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          A function for interleukin 2 in Foxp3-expressing regulatory T cells.

          Regulatory T cells (T(reg) cells) expressing the forkhead family transcription factor Foxp3 are critical mediators of dominant immune tolerance to self. Most T(reg) cells constitutively express the high-affinity interleukin 2 (IL-2) receptor alpha-chain (CD25); however, the precise function of IL-2 in T(reg) cell biology has remained controversial. To directly assess the effect of IL-2 signaling on T(reg) cell development and function, we analyzed mice containing the Foxp3(gfp) knock-in allele that were genetically deficient in either IL-2 (Il2(-/-)) or CD25 (Il2ra(-/-)). We found that IL-2 signaling was dispensable for the induction of Foxp3 expression in thymocytes from these mice, which indicated that IL-2 signaling does not have a nonredundant function in the development of T(reg) cells. Unexpectedly, Il2(-/-) and Il2ra(-/-) T(reg) cells were fully able to suppress T cell proliferation in vitro. In contrast, Foxp3 was not expressed in thymocytes or peripheral T cells from Il2rg(-/-) mice. Gene expression analysis showed that IL-2 signaling was required for maintenance of the expression of genes involved in the regulation of cell growth and metabolism. Thus, IL-2 signaling seems to be critically required for maintaining the homeostasis and competitive fitness of T(reg) cells in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The biology of interleukin-2.

            Much data support an essential role for interleukin (IL)-2 in immune tolerance. This idea is much different from the early paradigm in which IL-2 is central for protective immune responses. This change in thinking occurred when a T regulatory cell defect was shown to be responsible for the lethal autoimmunity associated with IL-2/IL-2R deficiency. This realization allowed investigators to explore immune responses in IL-2-nonresponsive mice rendered autoimmune-free. Such studies established that IL-2 sometimes contributes to optimal primary immune responses, but it is not mandatory. Emerging findings, however, suggest an essential role for IL-2 in immune memory. Here, the current understanding of the dual role of IL-2 in maintaining tolerance and contributing to immunity in vivo is reviewed with some emphasis on T regulatory cell production and homeostasis. Also discussed are implications of this new appreciation concerning the immunobiology of IL-2 with respect to targeting IL-2 or its receptor in immunotherapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              In vivo switch to IL-10–secreting T regulatory cells in high dose allergen exposure

              High dose bee venom exposure in beekeepers by natural bee stings represents a model to understand mechanisms of T cell tolerance to allergens in healthy individuals. Continuous exposure of nonallergic beekeepers to high doses of bee venom antigens induces diminished T cell–related cutaneous late-phase swelling to bee stings in parallel with suppressed allergen-specific T cell proliferation and T helper type 1 (Th1) and Th2 cytokine secretion. After multiple bee stings, venom antigen–specific Th1 and Th2 cells show a switch toward interleukin (IL) 10–secreting type 1 T regulatory (Tr1) cells. T cell regulation continues as long as antigen exposure persists and returns to initial levels within 2 to 3 mo after bee stings. Histamine receptor 2 up-regulated on specific Th2 cells displays a dual effect by directly suppressing allergen-stimulated T cells and increasing IL-10 production. In addition, cytotoxic T lymphocyte–associated antigen 4 and programmed death 1 play roles in allergen-specific T cell suppression. In contrast to its role in mucosal allergen tolerance, transforming growth factor β does not seem to be an essential player in skin-related allergen tolerance. Thus, rapid switch and expansion of IL-10–producing Tr1 cells and the use of multiple suppressive factors represent essential mechanisms in immune tolerance to a high dose of allergens in nonallergic individuals.
                Bookmark

                Author and article information

                Journal
                1886
                122234
                European Journal of Microbiology and Immunology
                EuJMI
                Akadémiai Kiadó, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic Publishers B.V.
                2062-509X
                2062-8633
                1 June 2014
                : 4
                : 2
                : 128-137
                Affiliations
                [ 1 ] Gonçalo Moniz Research Centre, Fiocruz, Salvador, Bahia, Brazil
                [ 2 ] Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
                [ 3 ] Laboratory 36L, Faculty of Medicine of Petropolis-FMP/FASE, Av. Barao do Rio Branco, 1003, 25.680-120, Centro, Petropolis, Rio de Janeiro, Brazil
                [ 4 ] Faculty of Nursing and Obstetrics, Juárez University of Durango State, Avenida Cuauhtémoc 223, 34000, Durango, Mexico
                [ 5 ] Institute for Microbiology and Hygiene, Campus Benjamin Franklin, Charité Medical School, Hindenburgdamm 27, D-12203, Berlin, Germany
                Author notes

                These authors contributed equally to the work.

                Article
                6
                10.1556/eujmi.4.2014.2.6
                4029292
                24883199
                0a440adc-32b6-40fc-92ef-777ab0d49b93
                History
                : 24 March 2014
                : 1 April 2014
                Categories
                Original Article

                Medicine,Immunology,Health & Social care,Microbiology & Virology,Infectious disease & Microbiology
                Trypanosoma cruzi ,mice,monoclonal antibody,anti-CD25,regulatory T cells,interleukin 10

                Comments

                Comment on this article