42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Measures of Thyroid Function among Belarusian Children and Adolescents Exposed to Iodine-131 from the Accident at the Chernobyl Nuclear Plant

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Thyroid dysfunction after exposure to low or moderate doses of radioactive iodine-131 ( 131I) at a young age is a public health concern. However, quantitative data are sparse concerning 131I-related risk of these common diseases.

          Objective: Our goal was to assess the prevalence of thyroid dysfunction in association with 131I exposure during childhood (≤ 18 years) due to fallout from the Chernobyl accident.

          Methods: We conducted a cross-sectional analysis of hypothyroidism, hyperthyroidism, autoimmune thyroiditis (AIT), serum concentrations of thyroid-stimulating hormone (TSH), and autoantibodies to thyroperoxidase (ATPO) in relation to measurement-based 131I dose estimates in a Belarusian cohort of 10,827 individuals screened for various thyroid diseases.

          Results: Mean age at exposure (± SD) was 8.2 ± 5.0 years. Mean (median) estimated 131I thyroid dose was 0.54 (0.23) Gy (range, 0.001–26.6 Gy). We found significant positive associations of 131I dose with hypothyroidism (mainly subclinical and antibody-negative) and serum TSH concentration. The excess odds ratio per 1 Gy for hypothyroidism was 0.34 (95% CI: 0.15, 0.62) and varied significantly by age at exposure and at examination, presence of goiter, and urban/rural residency. We found no evidence of positive associations with antibody-positive hypothyroidism, hyperthyroidism, AIT, or elevated ATPO.

          Conclusions: The association between 131I dose and hypothyroidism in the Belarusian cohort is consistent with that previously reported for a Ukrainian cohort and strengthens evidence of the effect of environmental 131I exposure during childhood on hypothyroidism, but not other thyroid outcomes.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Subclinical thyroid disease: scientific review and guidelines for diagnosis and management.

          Patients with serum thyroid-stimulating hormone (TSH) levels outside the reference range and levels of free thyroxine (FT4) and triiodothyronine (T3) within the reference range are common in clinical practice. The necessity for further evaluation, possible treatment, and the urgency of treatment have not been clearly established. To define subclinical thyroid disease, review its epidemiology, recommend an appropriate evaluation, explore the risks and benefits of treatment and consequences of nontreatment, and determine whether population-based screening is warranted. MEDLINE, EMBASE, Biosis, the Agency for Healthcare Research and Quality, National Guideline Clearing House, the Cochrane Database of Systematic Reviews and Controlled Trials Register, and several National Health Services (UK) databases were searched for articles on subclinical thyroid disease published between 1995 and 2002. Articles published before 1995 were recommended by expert consultants. A total of 195 English-language or translated papers were reviewed. Editorials, individual case studies, studies enrolling fewer than 10 patients, and nonsystematic reviews were excluded. Information related to authorship, year of publication, number of subjects, study design, and results were extracted and formed the basis for an evidence report, consisting of tables and summaries of each subject area. The strength of the evidence that untreated subclinical thyroid disease is associated with clinical symptoms and adverse clinical outcomes was assessed and recommendations for clinical practice developed. Data relating the progression of subclinical to overt hypothyroidism were rated as good, but data relating treatment to prevention of progression were inadequate to determine a treatment benefit. Data relating a serum TSH level higher than 10 mIU/L to elevations in serum cholesterol were rated as fair but data relating to benefits of treatment were rated as insufficient. All other associations of symptoms and benefit of treatment were rated as insufficient or absent. Data relating a serum TSH concentration lower than 0.1 mIU/L to the presence of atrial fibrillation and progression to overt hyperthyroidism were rated as good, but no data supported treatment to prevent these outcomes. Data relating restoration of the TSH level to within the reference range with improvements in bone mineral density were rated as fair. Data addressing all other associations of subclinical hyperthyroid disease and adverse clinical outcomes or treatment benefits were rated as insufficient or absent. Subclinical hypothyroid disease in pregnancy is a special case and aggressive case finding and treatment in pregnant women can be justified. Data supporting associations of subclinical thyroid disease with symptoms or adverse clinical outcomes or benefits of treatment are few. The consequences of subclinical thyroid disease (serum TSH 0.1-0.45 mIU/L or 4.5-10.0 mIU/L) are minimal and we recommend against routine treatment of patients with TSH levels in these ranges. There is insufficient evidence to support population-based screening. Aggressive case finding is appropriate in pregnant women, women older than 60 years, and others at high risk for thyroid dysfunction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey.

            The original Whickham Survey documented the prevalence of thyroid disorders in a randomly selected sample of 2779 adults which matched the population of Great Britain in age, sex and social class. The aim of the twenty-year follow-up survey was to determine the incidence and natural history of thyroid disease in this cohort. Subjects were traced at follow-up via the Electoral Register, General Practice registers, Gateshead Family Health Services Authority register and Office of Population Censuses and Surveys. Eight hundred and twenty-five subjects (30% of the sample) had died and, in addition to death certificates, two-thirds had information from either hospital/General Practitioner notes or post-mortem reports to document morbidity prior to death. Of the 1877 known survivors, 96% participated in the follow-up study and 91% were tested for clinical, biochemical and immunological evidence of thyroid dysfunction. Outcomes in terms of morbidity and mortality were determined for over 97% of the original sample. The mean incidence (with 95% confidence intervals) of spontaneous hypothyroidism in women was 3.5/1000 survivors/year (2.8-4.5) rising to 4.1/1000 survivors/year (3.3-5.0) for all causes of hypothyroidism and in men was 0.6/1000 survivors/year (0.3-1.2). The mean incidence of hyperthyroidism in women was 0.8/1000 survivors/year (0.5-1.4) and was negligible in men. Similar incidence rates were calculated for the deceased subjects. An estimate of the probability of the development of hypothyroidism and hyperthyroidism at a particular time, i.e. the hazard rate, showed an increase with age in hypothyroidism but no age relation in hyperthyroidism. The frequency of goitre decreased with age with 10% of women and 2% of men having a goitre at follow-up, as compared to 23% and 5% in the same subjects respectively at the first survey. The presence of a goitre at either survey was not associated with any clinical or biochemical evidence of thyroid dysfunction. In women, an association was found between the development of a goitre and thyroid-antibody status at follow-up, but not initially. The risk of having developed hypothyroidism at follow-up was examined with respect to risk factors identified at first survey. The odds ratios (with 95% confidence intervals) of developing hypothyroidism with (a) raised serum TSH alone were 8 (3-20) for women and 44 (19-104) for men; (b) positive anti-thyroid antibodies alone were 8 (5-15) for women and 25 (10-63) for men; (c) both raised serum TSH and positive anti-thyroid antibodies were 38 (22-65) for women and 173 (81-370) for men. A logit model indicated that increasing values of serum TSH above 2mU/l at first survey increased the probability of developing hypothyroidism which was further increased in the presence of anti-thyroid antibodies. Neither a positive family history of any form of thyroid disease nor parity of women at first survey was associated with increased risk of developing hypothyroidism. Fasting cholesterol and triglyceride levels at first survey when corrected for age showed no association with the development of hypothyroidism in women. This historical cohort study has provided incidence data for thyroid disease over a twenty-year period for a representative cross-sectional sample of the population, and has allowed the determination of the importance of prognostic risk factors for thyroid disease identified twenty years earlier.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Risk of thyroid cancer after exposure to 131I in childhood.

              After the Chernobyl nuclear power plant accident in April 1986, a large increase in the incidence of childhood thyroid cancer was reported in contaminated areas. Most of the radiation exposure to the thyroid was from iodine isotopes, especially 131I. We carried out a population-based case-control study of thyroid cancer in Belarus and the Russian Federation to evaluate the risk of thyroid cancer after exposure to radioactive iodine in childhood and to investigate environmental and host factors that may modify this risk. We studied 276 case patients with thyroid cancer through 1998 and 1300 matched control subjects, all aged younger than 15 years at the time of the accident. Individual doses were estimated for each subject based on their whereabouts and dietary habits at the time of the accident and in following days, weeks, and years; their likely stable iodine status at the time of the accident was also evaluated. Data were analyzed by conditional logistic regression using several different models. All statistical tests were two-sided. A strong dose-response relationship was observed between radiation dose to the thyroid received in childhood and thyroid cancer risk (P<.001). For a dose of 1 Gy, the estimated odds ratio of thyroid cancer varied from 5.5 (95% confidence interval [CI] = 3.1 to 9.5) to 8.4 (95% CI = 4.1 to 17.3), depending on the risk model. A linear dose-response relationship was observed up to 1.5-2 Gy. The risk of radiation-related thyroid cancer was three times higher in iodine-deficient areas (relative risk [RR]= 3.2, 95% CI = 1.9 to 5.5) than elsewhere. Administration of potassium iodide as a dietary supplement reduced this risk of radiation-related thyroid cancer by a factor of 3 (RR = 0.34, 95% CI = 0.1 to 0.9, for consumption of potassium iodide versus no consumption). Exposure to (131)I in childhood is associated with an increased risk of thyroid cancer. Both iodine deficiency and iodine supplementation appear to modify this risk. These results have important public health implications: stable iodine supplementation in iodine-deficient populations may substantially reduce the risk of thyroid cancer related to radioactive iodines in case of exposure to radioactive iodines in childhood that may occur after radiation accidents or during medical diagnostic and therapeutic procedures.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                07 May 2013
                July 2013
                : 121
                : 7
                : 865-871
                Affiliations
                [1 ]Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
                [2 ]The Republican Research Center for Radiation Medicine and Human Ecology, Gomel, Belarus
                [3 ]Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
                [4 ]The Thyroid Center, Columbia University, New York, New York, USA
                [5 ]Department of Anthropoecology and Epidemiology, International Sakharov Environmental University, Minsk, Belarus
                [6 ]Belarusian Medical Academy of Post-Graduate Education, Minsk, Belarus
                [7 ]Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
                Author notes
                Address correspondence to E. Ostroumova, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, 9609 Medical Center Dr., Room 7E560 MSC 9778 Bethesda, MD 20892-9778 USA. Telephone: (240) 276-7403. E-mail: ostroume@ 123456mail.nih.gov
                Article
                ehp.1205783
                10.1289/ehp.1205783
                3701991
                23651658
                0a467494-6a2d-4b0f-a733-3160fe14be7e
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, properly cited.

                History
                : 18 July 2012
                : 01 May 2013
                Categories
                Research

                Public health
                antithyroid antibodies,autoimmune thyroiditis,chernobyl,chornobyl,dose response,hyperthyroidism,hypothyroidism,radioiodine,thyroid gland

                Comments

                Comment on this article